Abstract:Data used by automated decision-making systems, such as Machine Learning models, often reflects discriminatory behavior that occurred in the past. These biases in the training data are sometimes related to label noise, such as in COMPAS, where more African-American offenders are wrongly labeled as having a higher risk of recidivism when compared to their White counterparts. Models trained on such biased data may perpetuate or even aggravate the biases with respect to sensitive information, such as gender, race, or age. However, while multiple label noise correction approaches are available in the literature, these focus on model performance exclusively. In this work, we propose Fair-OBNC, a label noise correction method with fairness considerations, to produce training datasets with measurable demographic parity. The presented method adapts Ordering-Based Noise Correction, with an adjusted criterion of ordering, based both on the margin of error of an ensemble, and the potential increase in the observed demographic parity of the dataset. We evaluate Fair-OBNC against other different pre-processing techniques, under different scenarios of controlled label noise. Our results show that the proposed method is the overall better alternative within the pool of label correction methods, being capable of attaining better reconstructions of the original labels. Models trained in the corrected data have an increase, on average, of 150% in demographic parity, when compared to models trained in data with noisy labels, across the considered levels of label noise.
Abstract:Financial fraud is the cause of multi-billion dollar losses annually. Traditionally, fraud detection systems rely on rules due to their transparency and interpretability, key features in domains where decisions need to be explained. However, rule systems require significant input from domain experts to create and tune, an issue that rule induction algorithms attempt to mitigate by inferring rules directly from data. We explore the application of these algorithms to fraud detection, where rule systems are constrained to have a low false positive rate (FPR) or alert rate, by proposing RIFF, a rule induction algorithm that distills a low FPR rule set directly from decision trees. Our experiments show that the induced rules are often able to maintain or improve performance of the original models for low FPR tasks, while substantially reducing their complexity and outperforming rules hand-tuned by experts.
Abstract:The increasing use of deep learning across various domains highlights the importance of understanding the decision-making processes of these black-box models. Recent research focusing on the decision boundaries of deep classifiers, relies on generated synthetic instances in areas of low confidence, uncovering samples that challenge both models and humans. We propose a novel approach to enhance the interpretability of deep binary classifiers by selecting representative samples from the decision boundary - prototypes - and applying post-model explanation algorithms. We evaluate the effectiveness of our approach through 2D visualizations and GradientSHAP analysis. Our experiments demonstrate the potential of the proposed method, revealing distinct and compact clusters and diverse prototypes that capture essential features that lead to low-confidence decisions. By offering a more aggregated view of deep classifiers' decision boundaries, our work contributes to the responsible development and deployment of reliable machine learning systems.
Abstract:We introduce the Robustness of Hierarchically Organized Time Series (RHiOTS) framework, designed to assess the robustness of hierarchical time series forecasting models and algorithms on real-world datasets. Hierarchical time series, where lower-level forecasts must sum to upper-level ones, are prevalent in various contexts, such as retail sales across countries. Current empirical evaluations of forecasting methods are often limited to a small set of benchmark datasets, offering a narrow view of algorithm behavior. RHiOTS addresses this gap by systematically altering existing datasets and modifying the characteristics of individual series and their interrelations. It uses a set of parameterizable transformations to simulate those changes in the data distribution. Additionally, RHiOTS incorporates an innovative visualization component, turning complex, multidimensional robustness evaluation results into intuitive, easily interpretable visuals. This approach allows an in-depth analysis of algorithm and model behavior under diverse conditions. We illustrate the use of RHiOTS by analyzing the predictive performance of several algorithms. Our findings show that traditional statistical methods are more robust than state-of-the-art deep learning algorithms, except when the transformation effect is highly disruptive. Furthermore, we found no significant differences in the robustness of the algorithms when applying specific reconciliation methods, such as MinT. RHiOTS provides researchers with a comprehensive tool for understanding the nuanced behavior of forecasting algorithms, offering a more reliable basis for selecting the most appropriate method for a given problem.
Abstract:Accurate evaluation of forecasting models is essential for ensuring reliable predictions. Current practices for evaluating and comparing forecasting models focus on summarising performance into a single score, using metrics such as SMAPE. We hypothesize that averaging performance over all samples dilutes relevant information about the relative performance of models. Particularly, conditions in which this relative performance is different than the overall accuracy. We address this limitation by proposing a novel framework for evaluating univariate time series forecasting models from multiple perspectives, such as one-step ahead forecasting versus multi-step ahead forecasting. We show the advantages of this framework by comparing a state-of-the-art deep learning approach with classical forecasting techniques. While classical methods (e.g. ARIMA) are long-standing approaches to forecasting, deep neural networks (e.g. NHITS) have recently shown state-of-the-art forecasting performance in benchmark datasets. We conducted extensive experiments that show NHITS generally performs best, but its superiority varies with forecasting conditions. For instance, concerning the forecasting horizon, NHITS only outperforms classical approaches for multi-step ahead forecasting. Another relevant insight is that, when dealing with anomalies, NHITS is outperformed by methods such as Theta. These findings highlight the importance of aspect-based model evaluation.
Abstract:The effectiveness of univariate forecasting models is often hampered by conditions that cause them stress. A model is considered to be under stress if it shows a negative behaviour, such as higher-than-usual errors or increased uncertainty. Understanding the factors that cause stress to forecasting models is important to improve their reliability, transparency, and utility. This paper addresses this problem by contributing with a novel framework called MAST (Meta-learning and data Augmentation for Stress Testing). The proposed approach aims to model and characterize stress in univariate time series forecasting models, focusing on conditions where they exhibit large errors. In particular, MAST is a meta-learning approach that predicts the probability that a given model will perform poorly on a given time series based on a set of statistical time series features. MAST also encompasses a novel data augmentation technique based on oversampling to improve the metadata concerning stress. We conducted experiments using three benchmark datasets that contain a total of 49.794 time series to validate the performance of MAST. The results suggest that the proposed approach is able to identify conditions that lead to large errors. The method and experiments are publicly available in a repository.
Abstract:Most forecasting methods use recent past observations (lags) to model the future values of univariate time series. Selecting an adequate number of lags is important for training accurate forecasting models. Several approaches and heuristics have been devised to solve this task. However, there is no consensus about what the best approach is. Besides, lag selection procedures have been developed based on local models and classical forecasting techniques such as ARIMA. We bridge this gap in the literature by carrying out an extensive empirical analysis of different lag selection methods. We focus on deep learning methods trained in a global approach, i.e., on datasets comprising multiple univariate time series. The experiments were carried out using three benchmark databases that contain a total of 2411 univariate time series. The results indicate that the lag size is a relevant parameter for accurate forecasts. In particular, excessively small or excessively large lag sizes have a considerable negative impact on forecasting performance. Cross-validation approaches show the best performance for lag selection, but this performance is comparable with simple heuristics.
Abstract:Recent state-of-the-art forecasting methods are trained on collections of time series. These methods, often referred to as global models, can capture common patterns in different time series to improve their generalization performance. However, they require large amounts of data that might not be readily available. Besides this, global models sometimes fail to capture relevant patterns unique to a particular time series. In these cases, data augmentation can be useful to increase the sample size of time series datasets. The main contribution of this work is a novel method for generating univariate time series synthetic samples. Our approach stems from the insight that the observations concerning a particular time series of interest represent only a small fraction of all observations. In this context, we frame the problem of training a forecasting model as an imbalanced learning task. Oversampling strategies are popular approaches used to deal with the imbalance problem in machine learning. We use these techniques to create synthetic time series observations and improve the accuracy of forecasting models. We carried out experiments using 7 different databases that contain a total of 5502 univariate time series. We found that the proposed solution outperforms both a global and a local model, thus providing a better trade-off between these two approaches.
Abstract:Forecasting methods are affected by data quality issues in two ways: 1. they are hard to predict, and 2. they may affect the model negatively when it is updated with new data. The latter issue is usually addressed by pre-processing the data to remove those issues. An alternative approach has recently been proposed, Corrector LSTM (cLSTM), which is a Read \& Write Machine Learning (RW-ML) algorithm that changes the data while learning to improve its predictions. Despite promising results being reported, cLSTM is computationally expensive, as it uses a meta-learner to monitor the hidden states of the LSTM. We propose a new RW-ML algorithm, Kernel Corrector LSTM (KcLSTM), that replaces the meta-learner of cLSTM with a simpler method: Kernel Smoothing. We empirically evaluate the forecasting accuracy and the training time of the new algorithm and compare it with cLSTM and LSTM. Results indicate that it is able to decrease the training time while maintaining a competitive forecasting accuracy.
Abstract:Deep learning approaches are increasingly used to tackle forecasting tasks. A key factor in the successful application of these methods is a large enough training sample size, which is not always available. In these scenarios, synthetic data generation techniques are usually applied to augment the dataset. Data augmentation is typically applied before fitting a model. However, these approaches create a single augmented dataset, potentially limiting their effectiveness. This work introduces OnDAT (On-the-fly Data Augmentation for Time series) to address this issue by applying data augmentation during training and validation. Contrary to traditional methods that create a single, static augmented dataset beforehand, OnDAT performs augmentation on-the-fly. By generating a new augmented dataset on each iteration, the model is exposed to a constantly changing augmented data variations. We hypothesize this process enables a better exploration of the data space, which reduces the potential for overfitting and improves forecasting performance. We validated the proposed approach using a state-of-the-art deep learning forecasting method and 8 benchmark datasets containing a total of 75797 time series. The experiments suggest that OnDAT leads to better forecasting performance than a strategy that applies data augmentation before training as well as a strategy that does not involve data augmentation. The method and experiments are publicly available.