Abstract:Recent studies have begun developing autonomous game players for social deduction games using large language models (LLMs). When building LLM players, fine-grained evaluations are crucial for addressing weaknesses in game-playing abilities. However, existing studies have often overlooked such assessments. Specifically, we point out two issues with the evaluation methods employed. First, game-playing abilities have typically been assessed through game-level outcomes rather than specific event-level skills; Second, error analyses have lacked structured methodologies. To address these issues, we propose an approach utilizing a variant of the SpyFall game, named SpyGame. We conducted an experiment with four LLMs, analyzing their gameplay behavior in SpyGame both quantitatively and qualitatively. For the quantitative analysis, we introduced eight metrics to resolve the first issue, revealing that these metrics are more effective than existing ones for evaluating the two critical skills: intent identification and camouflage. In the qualitative analysis, we performed thematic analysis to resolve the second issue. This analysis identifies four major categories that affect gameplay of LLMs. Additionally, we demonstrate how these categories complement and support the findings from the quantitative analysis.
Abstract:In this paper, we present a method to reconstruct the world and multiple dynamic humans in 3D from a monocular video input. As a key idea, we represent both the world and multiple humans via the recently emerging 3D Gaussian Splatting (3D-GS) representation, enabling to conveniently and efficiently compose and render them together. In particular, we address the scenarios with severely limited and sparse observations in 3D human reconstruction, a common challenge encountered in the real world. To tackle this challenge, we introduce a novel approach to optimize the 3D-GS representation in a canonical space by fusing the sparse cues in the common space, where we leverage a pre-trained 2D diffusion model to synthesize unseen views while keeping the consistency with the observed 2D appearances. We demonstrate our method can reconstruct high-quality animatable 3D humans in various challenging examples, in the presence of occlusion, image crops, few-shot, and extremely sparse observations. After reconstruction, our method is capable of not only rendering the scene in any novel views at arbitrary time instances, but also editing the 3D scene by removing individual humans or applying different motions for each human. Through various experiments, we demonstrate the quality and efficiency of our methods over alternative existing approaches.
Abstract:We present, PEGASUS, a method for constructing personalized generative 3D face avatars from monocular video sources. As a compositional generative model, our model enables disentangled controls to selectively alter the facial attributes (e.g., hair or nose) of the target individual, while preserving the identity. We present two key approaches to achieve this goal. First, we present a method to construct a person-specific generative 3D avatar by building a synthetic video collection of the target identity with varying facial attributes, where the videos are synthesized by borrowing parts from diverse individuals from other monocular videos. Through several experiments, we demonstrate the superior performance of our approach by generating unseen attributes with high realism. Subsequently, we introduce a zero-shot approach to achieve the same generative modeling more efficiently by leveraging a previously constructed personalized generative model.
Abstract:We present GALA, a framework that takes as input a single-layer clothed 3D human mesh and decomposes it into complete multi-layered 3D assets. The outputs can then be combined with other assets to create novel clothed human avatars with any pose. Existing reconstruction approaches often treat clothed humans as a single-layer of geometry and overlook the inherent compositionality of humans with hairstyles, clothing, and accessories, thereby limiting the utility of the meshes for downstream applications. Decomposing a single-layer mesh into separate layers is a challenging task because it requires the synthesis of plausible geometry and texture for the severely occluded regions. Moreover, even with successful decomposition, meshes are not normalized in terms of poses and body shapes, failing coherent composition with novel identities and poses. To address these challenges, we propose to leverage the general knowledge of a pretrained 2D diffusion model as geometry and appearance prior for humans and other assets. We first separate the input mesh using the 3D surface segmentation extracted from multi-view 2D segmentations. Then we synthesize the missing geometry of different layers in both posed and canonical spaces using a novel pose-guided Score Distillation Sampling (SDS) loss. Once we complete inpainting high-fidelity 3D geometry, we also apply the same SDS loss to its texture to obtain the complete appearance including the initially occluded regions. Through a series of decomposition steps, we obtain multiple layers of 3D assets in a shared canonical space normalized in terms of poses and human shapes, hence supporting effortless composition to novel identities and reanimation with novel poses. Our experiments demonstrate the effectiveness of our approach for decomposition, canonicalization, and composition tasks compared to existing solutions.
Abstract:We propose a 3D generation pipeline that uses diffusion models to generate realistic human digital avatars. Due to the wide variety of human identities, poses, and stochastic details, the generation of 3D human meshes has been a challenging problem. To address this, we decompose the problem into 2D normal map generation and normal map-based 3D reconstruction. Specifically, we first simultaneously generate realistic normal maps for the front and backside of a clothed human, dubbed dual normal maps, using a pose-conditional diffusion model. For 3D reconstruction, we ``carve'' the prior SMPL-X mesh to a detailed 3D mesh according to the normal maps through mesh optimization. To further enhance the high-frequency details, we present a diffusion resampling scheme on both body and facial regions, thus encouraging the generation of realistic digital avatars. We also seamlessly incorporate a recent text-to-image diffusion model to support text-based human identity control. Our method, namely, Chupa, is capable of generating realistic 3D clothed humans with better perceptual quality and identity variety.
Abstract:LiDAR is widely used to capture accurate 3D outdoor scene structures. However, LiDAR produces many undesirable noise points in snowy weather, which hamper analyzing meaningful 3D scene structures. Semantic segmentation with snow labels would be a straightforward solution for removing them, but it requires laborious point-wise annotation. To address this problem, we propose a novel self-supervised learning framework for snow points removal in LiDAR point clouds. Our method exploits the structural characteristic of the noise points: low spatial correlation with their neighbors. Our method consists of two deep neural networks: Point Reconstruction Network (PR-Net) reconstructs each point from its neighbors; Reconstruction Difficulty Network (RD-Net) predicts point-wise difficulty of the reconstruction by PR-Net, which we call reconstruction difficulty. With simple post-processing, our method effectively detects snow points without any label. Our method achieves the state-of-the-art performance among label-free approaches and is comparable to the fully-supervised method. Moreover, we demonstrate that our method can be exploited as a pretext task to improve label-efficiency of supervised training of de-snowing.