Abstract:We present PERSE, a method for building an animatable personalized generative avatar from a reference portrait. Our avatar model enables facial attribute editing in a continuous and disentangled latent space to control each facial attribute, while preserving the individual's identity. To achieve this, our method begins by synthesizing large-scale synthetic 2D video datasets, where each video contains consistent changes in the facial expression and viewpoint, combined with a variation in a specific facial attribute from the original input. We propose a novel pipeline to produce high-quality, photorealistic 2D videos with facial attribute editing. Leveraging this synthetic attribute dataset, we present a personalized avatar creation method based on the 3D Gaussian Splatting, learning a continuous and disentangled latent space for intuitive facial attribute manipulation. To enforce smooth transitions in this latent space, we introduce a latent space regularization technique by using interpolated 2D faces as supervision. Compared to previous approaches, we demonstrate that PERSE generates high-quality avatars with interpolated attributes while preserving identity of reference person.
Abstract:We present, PEGASUS, a method for constructing personalized generative 3D face avatars from monocular video sources. As a compositional generative model, our model enables disentangled controls to selectively alter the facial attributes (e.g., hair or nose) of the target individual, while preserving the identity. We present two key approaches to achieve this goal. First, we present a method to construct a person-specific generative 3D avatar by building a synthetic video collection of the target identity with varying facial attributes, where the videos are synthesized by borrowing parts from diverse individuals from other monocular videos. Through several experiments, we demonstrate the superior performance of our approach by generating unseen attributes with high realism. Subsequently, we introduce a zero-shot approach to achieve the same generative modeling more efficiently by leveraging a previously constructed personalized generative model.