Abstract:In today's networked world, Digital Twin Networks (DTNs) are revolutionizing how we understand and optimize physical networks. These networks, also known as 'Digital Twin Networks (DTNs)' or 'Networks Digital Twins (NDTs),' encompass many physical networks, from cellular and wireless to optical and satellite. They leverage computational power and AI capabilities to provide virtual representations, leading to highly refined recommendations for real-world network challenges. Within DTNs, tasks include network performance enhancement, latency optimization, energy efficiency, and more. To achieve these goals, DTNs utilize AI tools such as Machine Learning (ML), Deep Learning (DL), Reinforcement Learning (RL), Federated Learning (FL), and graph-based approaches. However, data quality, scalability, interpretability, and security challenges necessitate strategies prioritizing transparency, fairness, privacy, and accountability. This chapter delves into the world of AI-driven traffic analysis within DTNs. It explores DTNs' development efforts, tasks, AI models, and challenges while offering insights into how AI can enhance these dynamic networks. Through this journey, readers will gain a deeper understanding of the pivotal role AI plays in the ever-evolving landscape of networked systems.
Abstract:6G, the next generation of mobile networks, is set to offer even higher data rates, ultra-reliability, and lower latency than 5G. New 6G services will increase the load and dynamism of the network. Network Function Virtualization (NFV) aids with this increased load and dynamism by eliminating hardware dependency. It aims to boost the flexibility and scalability of network deployment services by separating network functions from their specific proprietary forms so that they can run as virtual network functions (VNFs) on commodity hardware. It is essential to design an NFV orchestration and management framework to support these services. However, deploying bulky monolithic VNFs on the network is difficult, especially when underlying resources are scarce, resulting in ineffective resource management. To address this, microservices-based NFV approaches are proposed. In this approach, monolithic VNFs are decomposed into micro VNFs, increasing the likelihood of their successful placement and resulting in more efficient resource management. This article discusses the proposed framework for resource allocation for microservices-based services to provide end-to-end Quality of Service (QoS) using the Double Deep Q Learning (DDQL) approach. Furthermore, to enhance this resource allocation approach, we discussed and addressed two crucial sub-problems: the need for a dynamic priority technique and the presence of the low-priority starvation problem. Using the Deep Deterministic Policy Gradient (DDPG) model, an Adaptive Scheduling model is developed that effectively mitigates the starvation problem. Additionally, the impact of incorporating traffic load considerations into deployment and scheduling is thoroughly investigated.
Abstract:Deep Reinforcement Learning (DRL) emerges as a prime solution for Unmanned Aerial Vehicle (UAV) trajectory planning, offering proficiency in navigating high-dimensional spaces, adaptability to dynamic environments, and making sequential decisions based on real-time feedback. Despite these advantages, the use of DRL for UAV trajectory planning requires significant retraining when the UAV is confronted with a new environment, resulting in wasted resources and time. Therefore, it is essential to develop techniques that can reduce the overhead of retraining DRL models, enabling them to adapt to constantly changing environments. This paper presents a novel method to reduce the need for extensive retraining using a double deep Q network (DDQN) model as a pretrained base, which is subsequently adapted to different urban environments through Continuous Transfer Learning (CTL). Our method involves transferring the learned model weights and adapting the learning parameters, including the learning and exploration rates, to suit each new environment specific characteristics. The effectiveness of our approach is validated in three scenarios, each with different levels of similarity. CTL significantly improves learning speed and success rates compared to DDQN models initiated from scratch. For similar environments, Transfer Learning (TL) improved stability, accelerated convergence by 65%, and facilitated 35% faster adaptation in dissimilar settings.
Abstract:This paper investigates the potential of Digital Twins (DTs) to enhance network performance in densely populated urban areas, specifically focusing on vehicular networks. The study comprises two phases. In Phase I, we utilize traffic data and AI clustering to identify critical locations, particularly in crowded urban areas with high accident rates. In Phase II, we evaluate the advantages of twinning vehicular networks through three deployment scenarios: edge-based twin, cloud-based twin, and hybrid-based twin. Our analysis demonstrates that twinning significantly reduces network delays, with virtual twins outperforming physical networks. Virtual twins maintain low delays even with increased vehicle density, such as 15.05 seconds for 300 vehicles. Moreover, they exhibit faster computational speeds, with cloud-based twins being 1.7 times faster than edge twins in certain scenarios. These findings provide insights for efficient vehicular communication and underscore the potential of virtual twins in enhancing vehicular networks in crowded areas while emphasizing the importance of considering real-world factors when making deployment decisions.
Abstract:The effectiveness of Intrusion Detection Systems (IDS) is critical in an era where cyber threats are becoming increasingly complex. Machine learning (ML) and deep learning (DL) models provide an efficient and accurate solution for identifying attacks and anomalies in computer networks. However, using ML and DL models in IDS has led to a trust deficit due to their non-transparent decision-making. This transparency gap in IDS research is significant, affecting confidence and accountability. To address, this paper introduces a novel Explainable IDS approach, called X-CBA, that leverages the structural advantages of Graph Neural Networks (GNNs) to effectively process network traffic data, while also adapting a new Explainable AI (XAI) methodology. Unlike most GNN-based IDS that depend on labeled network traffic and node features, thereby overlooking critical packet-level information, our approach leverages a broader range of traffic data through network flows, including edge attributes, to improve detection capabilities and adapt to novel threats. Through empirical testing, we establish that our approach not only achieves high accuracy with 99.47% in threat detection but also advances the field by providing clear, actionable explanations of its analytical outcomes. This research also aims to bridge the current gap and facilitate the broader integration of ML/DL technologies in cybersecurity defenses by offering a local and global explainability solution that is both precise and interpretable.
Abstract:Despite the crucial importance of addressing Black Hole failures in Internet backbone networks, effective detection strategies in backbone networks are lacking. This is largely because previous research has been centered on Mobile Ad-hoc Networks (MANETs), which operate under entirely different dynamics, protocols, and topologies, making their findings not directly transferable to backbone networks. Furthermore, detecting Black Hole failures in backbone networks is particularly challenging. It requires a comprehensive range of network data due to the wide variety of conditions that need to be considered, making data collection and analysis far from straightforward. Addressing this gap, our study introduces a novel approach for Black Hole detection in backbone networks using specialized Yet Another Next Generation (YANG) data models with Black Hole-sensitive Metric Matrix (BHMM) analysis. This paper details our method of selecting and analyzing four YANG models relevant to Black Hole detection in ISP networks, focusing on routing protocols and ISP-specific configurations. Our BHMM approach derived from these models demonstrates a 10% improvement in detection accuracy and a 13% increase in packet delivery rate, highlighting the efficiency of our approach. Additionally, we evaluate the Machine Learning approach leveraged with BHMM analysis in two different network settings, a commercial ISP network, and a scientific research-only network topology. This evaluation also demonstrates the practical applicability of our method, yielding significantly improved prediction outcomes in both environments.
Abstract:Digital Twins (DT) have become crucial to achieve sustainable and effective smart urban solutions. However, current DT modelling techniques cannot support the dynamicity of these smart city environments. This is caused by the lack of right-time data capturing in traditional approaches, resulting in inaccurate modelling and high resource and energy consumption challenges. To fill this gap, we explore spatiotemporal graphs and propose the Reinforcement Learning-based Adaptive Twining (RL-AT) mechanism with Deep Q Networks (DQN). By doing so, our study contributes to advancing Green Cities and showcases tangible benefits in accuracy, synchronisation, resource optimization, and energy efficiency. As a result, we note the spatiotemporal graphs are able to offer a consistent accuracy and 55% higher querying performance when implemented using graph databases. In addition, our model demonstrates right-time data capturing with 20% lower overhead and 25% lower energy consumption.
Abstract:The dramatic increase in the connectivity demand results in an excessive amount of Internet of Things (IoT) sensors. To meet the management needs of these large-scale networks, such as accurate monitoring and learning capabilities, Digital Twin (DT) is the key enabler. However, current attempts regarding DT implementations remain insufficient due to the perpetual connectivity requirements of IoT networks. Furthermore, the sensor data streaming in IoT networks cause higher processing time than traditional methods. In addition to these, the current intelligent mechanisms cannot perform well due to the spatiotemporal changes in the implemented IoT network scenario. To handle these challenges, we propose a DT-native AI-driven service architecture in support of the concept of IoT networks. Within the proposed DT-native architecture, we implement a TCP-based data flow pipeline and a Reinforcement Learning (RL)-based learner model. We apply the proposed architecture to one of the broad concepts of IoT networks, the Internet of Vehicles (IoV). We measure the efficiency of our proposed architecture and note ~30% processing time-saving thanks to the TCP-based data flow pipeline. Moreover, we test the performance of the learner model by applying several learning rate combinations for actor and critic networks and highlight the most successive model.
Abstract:As the current detection solutions of distributed denial of service attacks (DDoS) need additional infrastructures to handle high aggregate data rates, they are not suitable for sensor networks or the Internet of Things. Besides, the security architecture of software-defined sensor networks needs to pay attention to the vulnerabilities of both software-defined networks and sensor networks. In this paper, we propose a network-aware automated machine learning (AutoML) framework which detects DDoS attacks in software-defined sensor networks. Our framework selects an ideal machine learning algorithm to detect DDoS attacks in network-constrained environments, using metrics such as variable traffic load, heterogeneous traffic rate, and detection time while preventing over-fitting. Our contributions are two-fold: (i) we first investigate the trade-off between the efficiency of ML algorithms and network/traffic state in the scope of DDoS detection. (ii) we design and implement a software architecture containing open-source network tools, with the deployment of multiple ML algorithms. Lastly, we show that under the denial of service attacks, our framework ensures the traffic packets are still delivered within the network with additional delays.
Abstract:The idea of next-generation ports has become more apparent in the last ten years in response to the challenge posed by the rising demand for efficiency and the ever-increasing volume of goods. In this new era of intelligent infrastructure and facilities, it is evident that cyber-security has recently received the most significant attention from the seaport and maritime authorities, and it is a primary concern on the agenda of most ports. Traditional security solutions can be applied to safeguard IoT and Cyber-Physical Systems (CPS) from harmful entities. Nevertheless, security researchers can only watch, examine, and learn about the behaviors of attackers if these solutions operate more transparently. Herein, honeypots are potential solutions since they offer valuable information about the attackers. It can be virtual or physical. Virtual honeypots must be more realistic to entice attackers, necessitating better high-fidelity. To this end, Digital Twin (DT) technology can be employed to increase the complexity and simulation fidelity of the honeypots. Seaports can be attacked from both their existing devices and external devices at the same time. Existing mechanisms are insufficient to detect external attacks; therefore, the current systems cannot handle attacks at the desired level. DT and honeypot technologies can be used together to tackle them. Consequently, we suggest a DT-assisted honeypot, called TwinPot, for external attacks in smart seaports. Moreover, we propose an intelligent attack detection mechanism to handle different attack types using DT for internal attacks. Finally, we build an extensive smart seaport dataset for internal and external attacks using the MANSIM tool and two existing datasets to test the performance of our system. We show that under simultaneous internal and external attacks on the system, our solution successfully detects internal and external attacks.