Abstract:Creating a Digital Twin (DT) for Healthcare Intelligent Transportation Systems (HITS) is a hot research trend focusing on enhancing HITS management, particularly in emergencies where ambulance vehicles must arrive at the crash scene on time and track their real-time location is crucial to the medical authorities. Despite the claim of real-time representation, a temporal misalignment persists between the physical and virtual domains, leading to discrepancies in the ambulance's location representation. This study proposes integrating AI predictive models, specifically Support Vector Regression (SVR) and Deep Neural Networks (DNN), within a constructed mock DT data pipeline framework to anticipate the medical vehicle's next location in the virtual world. These models align virtual representations with their physical counterparts, i.e., metaphorically offsetting the synchronization delay between the two worlds. Trained meticulously on a historical geospatial dataset, SVR and DNN exhibit exceptional prediction accuracy in MATLAB and Python environments. Through various testing scenarios, we visually demonstrate the efficacy of our methodology, showcasing SVR and DNN's key role in significantly reducing the witnessed gap within the HITS's DT. This transformative approach enhances real-time synchronization in emergency HITS by approximately 88% to 93%.
Abstract:Multimodal hearing aids (HAs) aim to deliver more intelligible audio in noisy environments by contextually sensing and processing data in the form of not only audio but also visual information (e.g. lip reading). Machine learning techniques can play a pivotal role for the contextually processing of multimodal data. However, since the computational power of HA devices is low, therefore this data must be processed either on the edge or cloud which, in turn, poses privacy concerns for sensitive user data. Existing literature proposes several techniques for data encryption but their computational complexity is a major bottleneck to meet strict latency requirements for development of future multi-modal hearing aids. To overcome this problem, this paper proposes a novel real-time audio/visual data encryption scheme based on chaos-based encryption using the Tangent-Delay Ellipse Reflecting Cavity-Map System (TD-ERCS) map and Non-linear Chaotic (NCA) Algorithm. The results achieved against different security parameters, including Correlation Coefficient, Unified Averaged Changed Intensity (UACI), Key Sensitivity Analysis, Number of Changing Pixel Rate (NPCR), Mean-Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Entropy test, and Chi-test, indicate that the newly proposed scheme is more lightweight due to its lower execution time as compared to existing schemes and more secure due to increased key-space against modern brute-force attacks.