Abstract:In today's networked world, Digital Twin Networks (DTNs) are revolutionizing how we understand and optimize physical networks. These networks, also known as 'Digital Twin Networks (DTNs)' or 'Networks Digital Twins (NDTs),' encompass many physical networks, from cellular and wireless to optical and satellite. They leverage computational power and AI capabilities to provide virtual representations, leading to highly refined recommendations for real-world network challenges. Within DTNs, tasks include network performance enhancement, latency optimization, energy efficiency, and more. To achieve these goals, DTNs utilize AI tools such as Machine Learning (ML), Deep Learning (DL), Reinforcement Learning (RL), Federated Learning (FL), and graph-based approaches. However, data quality, scalability, interpretability, and security challenges necessitate strategies prioritizing transparency, fairness, privacy, and accountability. This chapter delves into the world of AI-driven traffic analysis within DTNs. It explores DTNs' development efforts, tasks, AI models, and challenges while offering insights into how AI can enhance these dynamic networks. Through this journey, readers will gain a deeper understanding of the pivotal role AI plays in the ever-evolving landscape of networked systems.
Abstract:This paper investigates the potential of Digital Twins (DTs) to enhance network performance in densely populated urban areas, specifically focusing on vehicular networks. The study comprises two phases. In Phase I, we utilize traffic data and AI clustering to identify critical locations, particularly in crowded urban areas with high accident rates. In Phase II, we evaluate the advantages of twinning vehicular networks through three deployment scenarios: edge-based twin, cloud-based twin, and hybrid-based twin. Our analysis demonstrates that twinning significantly reduces network delays, with virtual twins outperforming physical networks. Virtual twins maintain low delays even with increased vehicle density, such as 15.05 seconds for 300 vehicles. Moreover, they exhibit faster computational speeds, with cloud-based twins being 1.7 times faster than edge twins in certain scenarios. These findings provide insights for efficient vehicular communication and underscore the potential of virtual twins in enhancing vehicular networks in crowded areas while emphasizing the importance of considering real-world factors when making deployment decisions.