Abstract:The idea of next-generation ports has become more apparent in the last ten years in response to the challenge posed by the rising demand for efficiency and the ever-increasing volume of goods. In this new era of intelligent infrastructure and facilities, it is evident that cyber-security has recently received the most significant attention from the seaport and maritime authorities, and it is a primary concern on the agenda of most ports. Traditional security solutions can be applied to safeguard IoT and Cyber-Physical Systems (CPS) from harmful entities. Nevertheless, security researchers can only watch, examine, and learn about the behaviors of attackers if these solutions operate more transparently. Herein, honeypots are potential solutions since they offer valuable information about the attackers. It can be virtual or physical. Virtual honeypots must be more realistic to entice attackers, necessitating better high-fidelity. To this end, Digital Twin (DT) technology can be employed to increase the complexity and simulation fidelity of the honeypots. Seaports can be attacked from both their existing devices and external devices at the same time. Existing mechanisms are insufficient to detect external attacks; therefore, the current systems cannot handle attacks at the desired level. DT and honeypot technologies can be used together to tackle them. Consequently, we suggest a DT-assisted honeypot, called TwinPot, for external attacks in smart seaports. Moreover, we propose an intelligent attack detection mechanism to handle different attack types using DT for internal attacks. Finally, we build an extensive smart seaport dataset for internal and external attacks using the MANSIM tool and two existing datasets to test the performance of our system. We show that under simultaneous internal and external attacks on the system, our solution successfully detects internal and external attacks.
Abstract:Existing distributed denial of service attack (DDoS) solutions cannot handle highly aggregated data rates; thus, they are unsuitable for Internet service provider (ISP) core networks. This article proposes a digital twin-enabled intelligent DDoS detection mechanism using an online learning method for autonomous systems. Our contributions are three-fold: we first design a DDoS detection architecture based on the digital twin for ISP core networks. We implemented a Yet Another Next Generation (YANG) model and an automated feature selection (AutoFS) module to handle core network data. We used an online learning approach to update the model instantly and efficiently, improve the learning model quickly, and ensure accurate predictions. Finally, we reveal that our proposed solution successfully detects DDoS attacks and updates the feature selection method and learning model with a true classification rate of ninety-seven percent. Our proposed solution can estimate the attack within approximately fifteen minutes after the DDoS attack starts.
Abstract:We propose a new spectrum allocation strategy, aided by unsupervised learning, for multiuser terahertz communication systems. In this strategy, adaptive sub-band bandwidth is considered such that the spectrum of interest can be divided into sub-bands with unequal bandwidths. This strategy reduces the variation in molecular absorption loss among the users, leading to the improved data rate performance. We first formulate an optimization problem to determine the optimal sub-band bandwidth and transmit power, and then propose the unsupervised learning-based approach to obtaining the near-optimal solution to this problem. In the proposed approach, we first train a deep neural network (DNN) while utilizing a loss function that is inspired by the Lagrangian of the formulated problem. Then using the trained DNN, we approximate the near-optimal solutions. Numerical results demonstrate that comparing to existing approaches, our proposed unsupervised learning-based approach achieves a higher data rate, especially when the molecular absorption coefficient within the spectrum of interest varies in a highly non-linear manner.
Abstract:In this paper, we propose a deep reinforcement learning (DRL) approach for solving the optimisation problem of the network's sum-rate in device-to-device (D2D) communications supported by an intelligent reflecting surface (IRS). The IRS is deployed to mitigate the interference and enhance the signal between the D2D transmitter and the associated D2D receiver. Our objective is to jointly optimise the transmit power at the D2D transmitter and the phase shift matrix at the IRS to maximise the network sum-rate. We formulate a Markov decision process and then propose the proximal policy optimisation for solving the maximisation game. Simulation results show impressive performance in terms of the achievable rate and processing time.
Abstract:Many of the devices used in Internet-of-Things (IoT) applications are energy-limited, and thus supplying energy while maintaining seamless connectivity for IoT devices is of considerable importance. In this context, we propose a simultaneous wireless power transfer and information transmission scheme for IoT devices with support from reconfigurable intelligent surface (RIS)-aided unmanned aerial vehicle (UAV) communications. In particular, in a first phase, IoT devices harvest energy from the UAV through wireless power transfer; and then in a second phase, the UAV collects data from the IoT devices through information transmission. To characterise the agility of the UAV, we consider two scenarios: a hovering UAV and a mobile UAV. Aiming at maximizing the total network sum-rate, we jointly optimize the trajectory of the UAV, the energy harvesting scheduling of IoT devices, and the phaseshift matrix of the RIS. We formulate a Markov decision process and propose two deep reinforcement learning algorithms to solve the optimization problem of maximizing the total network sum-rate. Numerical results illustrate the effectiveness of the UAV's flying path optimization and the network's throughput of our proposed techniques compared with other benchmark schemes. Given the strict requirements of the RIS and UAV, the significant improvement in processing time and throughput performance demonstrates that our proposed scheme is well applicable for practical IoT applications.
Abstract:Federated learning (FL) is capable of performing large distributed machine learning tasks across multiple edge users by periodically aggregating trained local parameters. To address key challenges of enabling FL over a wireless fog-cloud system (e.g., non-i.i.d. data, users' heterogeneity), we first propose an efficient FL algorithm (called FedFog) to perform the local aggregation of gradient parameters at fog servers and global training update at the cloud. Next, we employ FedFog in wireless fog-cloud systems by investigating a novel network-aware FL optimization problem that strikes the balance between the global loss and completion time. An iterative algorithm is then developed to obtain a precise measurement of the system performance, which helps design an efficient stopping criteria to output an appropriate number of global rounds. To mitigate the straggler effect, we propose a flexible user aggregation strategy that trains fast users first to obtain a certain level of accuracy before allowing slow users to join the global training updates. Extensive numerical results using several real-world FL tasks are provided to verify the theoretical convergence of FedFog. We also show that the proposed co-design of FL and communication is essential to substantially improve resource utilization while achieving comparable accuracy of the learning model.
Abstract:Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication. However, due to the limitation of their on-board power and flight time, it is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT). In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices. Then, a deep reinforcement learning-based technique is conceived for finding the optimal trajectory and throughput in a specific coverage area. After training, the UAV has the ability to autonomously collect all the data from user nodes at a significant total sum-rate improvement while minimising the associated resources used. Numerical results are provided to highlight how our techniques strike a balance between the throughput attained, trajectory, and the time spent. More explicitly, we characterise the attainable performance in terms of the UAV trajectory, the expected reward and the total sum-rate.
Abstract:In this paper, we propose intelligent reconfigurable surface (IRS)-assisted unmanned aerial vehicles (UAVs) networks that can utilise both advantages of agility and reflection for enhancing the network's performance. To aim at maximising the energy efficiency (EE) of the considered networks, we jointly optimise the power allocation of the UAVs and the phaseshift matrix of the IRS. A deep reinforcement learning (DRL) approach is proposed for solving the continuous optimisation problem with time-varying channel gain in a centralised fashion. Moreover, a parallel learning approach is also proposed for reducing the information transmission requirement of the centralised approach. Numerical results show a significant improvement of our proposed schemes compared with the conventional approaches in terms of EE, flexibility, and processing time. Our proposed DRL methods for IRS-assisted UAV networks can be used for real-time applications due to their capability of instant decision-making and handling the time-varying channel with the dynamic environmental setting.
Abstract:In this paper, we investigate the downlink multiple-input-multipleoutput (MIMO) broadcast channels in which a base transceiver station (BTS) broadcasts multiple data streams to K MIMO mobile stations (MSs) simultaneously. In order to maximize the weighted sum-rate (WSR) of the system subject to the transmitted power constraint, the design problem is to find the pre-coding matrices at BTS and the decoding matrices at MSs. However, such a design problem is typically a nonlinear and nonconvex optimization and, thus, it is quite hard to obtain the analytical solutions. To tackle with the mathematical difficulties, we propose an efficient stochastic optimization algorithm to optimize the transceiver matrices. Specifically, we utilize the linear minimum mean square error (MMSE) Wiener filters at MSs. Then, we introduce the constrained particle swarm optimization (PSO) algorithm to jointly optimize the precoding and decoding matrices. Numerical experiments are exhibited to validate the effectiveness of the proposed algorithm in terms of convergence, computational complexity and total WSR.