Abstract:Parameter Efficient Fine-Tuning (PEFT) offers an efficient solution for fine-tuning large pretrained language models for downstream tasks. However, most PEFT strategies are manually designed, often resulting in suboptimal performance. Recent automatic PEFT approaches aim to address this but face challenges such as search space entanglement, inefficiency, and lack of integration between parameter budgets and search processes. To overcome these issues, we introduce a novel Budget-guided Iterative search strategy for automatic PEFT (BIPEFT), significantly enhancing search efficiency. BIPEFT employs a new iterative search strategy to disentangle the binary module and rank dimension search spaces. Additionally, we design early selection strategies based on parameter budgets, accelerating the learning process by gradually removing unimportant modules and fixing rank dimensions. Extensive experiments on public benchmarks demonstrate the superior performance of BIPEFT in achieving efficient and effective PEFT for downstream tasks with a low parameter budget.
Abstract:Automatic International Classification of Diseases (ICD) coding plays a crucial role in the extraction of relevant information from clinical notes for proper recording and billing. One of the most important directions for boosting the performance of automatic ICD coding is modeling ICD code relations. However, current methods insufficiently model the intricate relationships among ICD codes and often overlook the importance of context in clinical notes. In this paper, we propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code representations. Our approach, unlike existing methods, employs a dependent learning paradigm that considers the context of clinical notes in modeling all possible code relations. We evaluate our approach on six public ICD coding datasets and the experimental results demonstrate the effectiveness of our approach compared to state-of-the-art baselines.
Abstract:The development of electronic health records (EHR) systems has enabled the collection of a vast amount of digitized patient data. However, utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics. With the advancements in machine learning techniques, deep learning has demonstrated its superiority in various applications, including healthcare. This survey systematically reviews recent advances in deep learning-based predictive models using EHR data. Specifically, we begin by introducing the background of EHR data and providing a mathematical definition of the predictive modeling task. We then categorize and summarize predictive deep models from multiple perspectives. Furthermore, we present benchmarks and toolkits relevant to predictive modeling in healthcare. Finally, we conclude this survey by discussing open challenges and suggesting promising directions for future research.