Abstract:Existing speaker diarization systems heavily rely on large amounts of manually annotated data, which is labor-intensive and challenging to collect in real-world scenarios. Additionally, the language-specific constraint in speaker diarization systems significantly hinders their applicability and scalability in multilingual settings. In this paper, we therefore propose a cluster-based speaker diarization system for multilingual telephone call applications. The proposed system supports multiple languages and does not require large-scale annotated data for the training process as leveraging the multilingual Whisper model to extract speaker embeddings and proposing a novel Mixture of Sparse Autoencoders (Mix-SAE) network architecture for unsupervised speaker clustering. Experimental results on the evaluating dataset derived from two-speaker subsets of CALLHOME and CALLFRIEND telephonic speech corpora demonstrate superior efficiency of the proposed Mix-SAE network to other autoencoder-based clustering methods. The overall performance of our proposed system also indicates the promising potential of our approach in developing unsupervised multilingual speaker diarization applications within the context of limited annotated data and enhancing the integration ability into comprehensive multi-task speech analysis systems (i.e. multiple tasks of speech-to-text, language detection, speaker diarization integrated in a low-complexity system).
Abstract:In this paper, we propose a deep learning based system for the task of deepfake audio detection. In particular, the draw input audio is first transformed into various spectrograms using three transformation methods of Short-time Fourier Transform (STFT), Constant-Q Transform (CQT), Wavelet Transform (WT) combined with different auditory-based filters of Mel, Gammatone, linear filters (LF), and discrete cosine transform (DCT). Given the spectrograms, we evaluate a wide range of classification models based on three deep learning approaches. The first approach is to train directly the spectrograms using our proposed baseline models of CNN-based model (CNN-baseline), RNN-based model (RNN-baseline), C-RNN model (C-RNN baseline). Meanwhile, the second approach is transfer learning from computer vision models such as ResNet-18, MobileNet-V3, EfficientNet-B0, DenseNet-121, SuffleNet-V2, Swint, Convnext-Tiny, GoogLeNet, MNASsnet, RegNet. In the third approach, we leverage the state-of-the-art audio pre-trained models of Whisper, Seamless, Speechbrain, and Pyannote to extract audio embeddings from the input spectrograms. Then, the audio embeddings are explored by a Multilayer perceptron (MLP) model to detect the fake or real audio samples. Finally, high-performance deep learning models from these approaches are fused to achieve the best performance. We evaluated our proposed models on ASVspoof 2019 benchmark dataset. Our best ensemble model achieved an Equal Error Rate (EER) of 0.03, which is highly competitive to top-performing systems in the ASVspoofing 2019 challenge. Experimental results also highlight the potential of selective spectrograms and deep learning approaches to enhance the task of audio deepfake detection.
Abstract:In this paper, we propose a deep learning based model for Acoustic Anomaly Detection of Machines, the task for detecting abnormal machines by analysing the machine sound. By conducting extensive experiments, we indicate that multiple techniques of pseudo audios, audio segment, data augmentation, Mahalanobis distance, and narrow frequency bands, which mainly focus on feature engineering, are effective to enhance the system performance. Among the evaluating techniques, the narrow frequency bands presents a significant impact. Indeed, our proposed model, which focuses on the narrow frequency bands, outperforms the DCASE baseline on the benchmark dataset of DCASE 2022 Task 2 Development set. The important role of the narrow frequency bands indicated in this paper inspires the research community on the task of Acoustic Anomaly Detection of Machines to further investigate and propose novel network architectures focusing on the frequency bands.
Abstract:The Sequential Sentence Classification task within the domain of medical abstracts, termed as SSC, involves the categorization of sentences into pre-defined headings based on their roles in conveying critical information in the abstract. In the SSC task, sentences are often sequentially related to each other. For this reason, the role of sentence embedding is crucial for capturing both the semantic information between words in the sentence and the contextual relationship of sentences within the abstract to provide a comprehensive representation for better classification. In this paper, we present a hierarchical deep learning model for the SSC task. First, we propose a LSTM-based network with multiple feature branches to create well-presented sentence embeddings at the sentence level. To perform the sequence of sentences, a convolutional-recurrent neural network (C-RNN) at the abstract level and a multi-layer perception network (MLP) at the segment level are developed that further enhance the model performance. Additionally, an ablation study is also conducted to evaluate the contribution of individual component in the entire network to the model performance at different levels. Our proposed system is very competitive to the state-of-the-art systems and further improve F1 scores of the baseline by 1.0%, 2.8%, and 2.6% on the benchmark datasets PudMed 200K RCT, PudMed 20K RCT and NICTA-PIBOSO, respectively.
Abstract:Knowledge about historic landslide event occurrence is important for supporting disaster risk reduction strategies. Building upon findings from 2022 Landslide4Sense Competition, we propose a deep neural network based system for landslide detection and segmentation from multisource remote sensing image input. We use a U-Net trained with Cross Entropy loss as baseline model. We then improve the U-Net baseline model by leveraging a wide range of deep learning techniques. In particular, we conduct feature engineering by generating new band data from the original bands, which helps to enhance the quality of remote sensing image input. Regarding the network architecture, we replace traditional convolutional layers in the U-Net baseline by a residual-convolutional layer. We also propose an attention layer which leverages the multi-head attention scheme. Additionally, we generate multiple output masks with three different resolutions, which creates an ensemble of three outputs in the inference process to enhance the performance. Finally, we propose a combined loss function which leverages Focal loss and IoU loss to train the network. Our experiments on the development set of the Landslide4Sense challenge achieve an F1 score and an mIoU score of 84.07 and 76.07, respectively. Our best model setup outperforms the challenge baseline and the proposed U-Net baseline, improving the F1 score/mIoU score by 6.8/7.4 and 10.5/8.8, respectively.
Abstract:In this technical report, a low-complexity deep learning system for acoustic scene classification (ASC) is presented. The proposed system comprises two main phases: (Phase I) Training a teacher network; and (Phase II) training a student network using distilled knowledge from the teacher. In the first phase, the teacher, which presents a large footprint model, is trained. After training the teacher, the embeddings, which are the feature map of the second last layer of the teacher, are extracted. In the second phase, the student network, which presents a low complexity model, is trained with the embeddings extracted from the teacher. Our experiments conducted on DCASE 2023 Task 1 Development dataset have fulfilled the requirement of low-complexity and achieved the best classification accuracy of 57.4%, improving DCASE baseline by 14.5%.
Abstract:In this paper, we present a deep learning based multimodal system for classifying daily life videos. To train the system, we propose a two-phase training strategy. In the first training phase (Phase I), we extract the audio and visual (image) data from the original video. We then train the audio data and the visual data with independent deep learning based models. After the training processes, we obtain audio embeddings and visual embeddings by extracting feature maps from the pre-trained deep learning models. In the second training phase (Phase II), we train a fusion layer to combine the audio/visual embeddings and a dense layer to classify the combined embedding into target daily scenes. Our extensive experiments, which were conducted on the benchmark dataset of DCASE (IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events) 2021 Task 1B Development, achieved the best classification accuracy of 80.5%, 91.8%, and 95.3% with only audio data, with only visual data, both audio and visual data, respectively. The highest classification accuracy of 95.3% presents an improvement of 17.9% compared with DCASE baseline and shows very competitive to the state-of-the-art systems.
Abstract:In this paper, we present a high-performance and light-weight deep learning model for Remote Sensing Image Classification (RSIC), the task of identifying the aerial scene of a remote sensing image. To this end, we first valuate various benchmark convolutional neural network (CNN) architectures: MobileNet V1/V2, ResNet 50/151V2, InceptionV3/InceptionResNetV2, EfficientNet B0/B7, DenseNet 121/201, ConNeXt Tiny/Large. Then, the best performing models are selected to train a compact model in a teacher-student arrangement. The knowledge distillation from the teacher aims to achieve high performance with significantly reduced complexity. By conducting extensive experiments on the NWPU-RESISC45 benchmark, our proposed teacher-student models outperforms the state-of-the-art systems, and has potential to be applied on a wide rage of edge devices.
Abstract:In this paper, we present a comprehensive analysis of Acoustic Scene Classification (ASC), the task of identifying the scene of an audio recording from its acoustic signature. In particular, we firstly propose an inception-based and low footprint ASC model, referred to as the ASC baseline. The proposed ASC baseline is then compared with benchmark and high-complexity network architectures of MobileNetV1, MobileNetV2, VGG16, VGG19, ResNet50V2, ResNet152V2, DenseNet121, DenseNet201, and Xception. Next, we improve the ASC baseline by proposing a novel deep neural network architecture which leverages residual-inception architectures and multiple kernels. Given the novel residual-inception (NRI) model, we further evaluate the trade off between the model complexity and the model accuracy performance. Finally, we evaluate whether sound events occurring in a sound scene recording can help to improve ASC accuracy, then indicate how a sound scene context is well presented by combining both sound scene and sound event information. We conduct extensive experiments on various ASC datasets, including Crowded Scenes, IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE) 2018 Task 1A and 1B, 2019 Task 1A and 1B, 2020 Task 1A, 2021 Task 1A, 2022 Task 1. The experimental results on several different ASC challenges highlight two main achievements; the first is to propose robust, general, and low complexity ASC systems which are suitable for real-life applications on a wide range of edge devices and mobiles; the second is to propose an effective visualization method for comprehensively presenting a sound scene context.
Abstract:The task of remote sensing image scene classification (RSISC), which aims at classifying remote sensing images into groups of semantic categories based on their contents, has taken the important role in a wide range of applications such as urban planning, natural hazards detection, environment monitoring,vegetation mapping, or geospatial object detection. During the past years, research community focusing on RSISC task has shown significant effort to publish diverse datasets as well as propose different approaches to deal with the RSISC challenges. Recently, almost proposed RSISC systems base on deep learning models which prove powerful and outperform traditional approaches using image processing and machine learning. In this paper, we also leverage the power of deep learning technology, evaluate a variety of deep neural network architectures, indicate main factors affecting the performance of a RSISC system. Given the comprehensive analysis, we propose a deep learning based framework for RSISC, which makes use of the transfer learning technique and multihead attention scheme. The proposed deep learning framework is evaluated on the benchmark NWPU-RESISC45 dataset and achieves the best classification accuracy of 94.7% which shows competitive to the state-of-the-art systems and potential for real-life applications.