Abstract:In this paper, we propose a deep neural network approach for deepfake speech detection (DSD) based on a lowcomplexity Depthwise-Inception Network (DIN) trained with a contrastive training strategy (CTS). In this framework, input audio recordings are first transformed into spectrograms using Short-Time Fourier Transform (STFT) and Linear Filter (LF), which are then used to train the DIN. Once trained, the DIN processes bonafide utterances to extract audio embeddings, which are used to construct a Gaussian distribution representing genuine speech. Deepfake detection is then performed by computing the distance between a test utterance and this distribution to determine whether the utterance is fake or bonafide. To evaluate our proposed systems, we conducted extensive experiments on the benchmark dataset of ASVspoof 2019 LA. The experimental results demonstrate the effectiveness of combining the Depthwise-Inception Network with the contrastive learning strategy in distinguishing between fake and bonafide utterances. We achieved Equal Error Rate (EER), Accuracy (Acc.), F1, AUC scores of 4.6%, 95.4%, 97.3%, and 98.9% respectively using a single, low-complexity DIN with just 1.77 M parameters and 985 M FLOPS on short audio segments (4 seconds). Furthermore, our proposed system outperforms the single-system submissions in the ASVspoof 2019 LA challenge, showcasing its potential for real-time applications.
Abstract:Terrorism has led to many problems in Thai societies, not only property damage but also civilian casualties. Predicting terrorism activities in advance can help prepare and manage risk from sabotage by these activities. This paper proposes a framework focusing on event classification in terrorism domain using fuzzy inference systems (FISs). Each FIS is a decision-making model combining fuzzy logic and approximate reasoning. It is generated in five main parts: the input interface, the fuzzification interface, knowledge base unit, decision making unit and output defuzzification interface. Adaptive neuro-fuzzy inference system (ANFIS) is a FIS model adapted by combining the fuzzy logic and neural network. The ANFIS utilizes automatic identification of fuzzy logic rules and adjustment of membership function (MF). Moreover, neural network can directly learn from data set to construct fuzzy logic rules and MF implemented in various applications. FIS settings are evaluated based on two comparisons. The first evaluation is the comparison between unstructured and structured events using the same FIS setting. The second comparison is the model settings between FIS and ANFIS for classifying structured events. The data set consists of news articles related to terrorism events in three southern provinces of Thailand. The experimental results show that the classification performance of the FIS resulting from structured events achieves satisfactory accuracy and is better than the unstructured events. In addition, the classification of structured events using ANFIS gives higher performance than the events using only FIS in the prediction of terrorism events.
Abstract:This article applies Machine Learning techniques to solve Intrusion Detection problems within computer networks. Due to complex and dynamic nature of computer networks and hacking techniques, detecting malicious activities remains a challenging task for security experts, that is, currently available defense systems suffer from low detection capability and high number of false alarms. To overcome such performance limitations, we propose a novel Machine Learning algorithm, namely Boosted Subspace Probabilistic Neural Network (BSPNN), which integrates an adaptive boosting technique and a semi parametric neural network to obtain good tradeoff between accuracy and generality. As the result, learning bias and generalization variance can be significantly minimized. Substantial experiments on KDD 99 intrusion benchmark indicate that our model outperforms other state of the art learning algorithms, with significantly improved detection accuracy, minimal false alarms and relatively small computational complexity.