The Sequential Sentence Classification task within the domain of medical abstracts, termed as SSC, involves the categorization of sentences into pre-defined headings based on their roles in conveying critical information in the abstract. In the SSC task, sentences are often sequentially related to each other. For this reason, the role of sentence embedding is crucial for capturing both the semantic information between words in the sentence and the contextual relationship of sentences within the abstract to provide a comprehensive representation for better classification. In this paper, we present a hierarchical deep learning model for the SSC task. First, we propose a LSTM-based network with multiple feature branches to create well-presented sentence embeddings at the sentence level. To perform the sequence of sentences, a convolutional-recurrent neural network (C-RNN) at the abstract level and a multi-layer perception network (MLP) at the segment level are developed that further enhance the model performance. Additionally, an ablation study is also conducted to evaluate the contribution of individual component in the entire network to the model performance at different levels. Our proposed system is very competitive to the state-of-the-art systems and further improve F1 scores of the baseline by 1.0%, 2.8%, and 2.6% on the benchmark datasets PudMed 200K RCT, PudMed 20K RCT and NICTA-PIBOSO, respectively.