CMLA
Abstract:Benchmark contamination poses a significant challenge to the reliability of Large Language Models (LLMs) evaluations, as it is difficult to assert whether a model has been trained on a test set. We introduce a solution to this problem by watermarking benchmarks before their release. The embedding involves reformulating the original questions with a watermarked LLM, in a way that does not alter the benchmark utility. During evaluation, we can detect ``radioactivity'', \ie traces that the text watermarks leave in the model during training, using a theoretically grounded statistical test. We test our method by pre-training 1B models from scratch on 10B tokens with controlled benchmark contamination, and validate its effectiveness in detecting contamination on ARC-Easy, ARC-Challenge, and MMLU. Results show similar benchmark utility post-watermarking and successful contamination detection when models are contaminated enough to enhance performance, e.g. $p$-val $=10^{-3}$ for +5$\%$ on ARC-Easy.
Abstract:This paper aims to provide differential privacy (DP) guarantees for Markov chain Monte Carlo (MCMC) algorithms. In a first part, we establish DP guarantees on samples output by MCMC algorithms as well as Monte Carlo estimators associated with these methods under assumptions on the convergence properties of the underlying Markov chain. In particular, our results highlight the critical condition of ensuring the target distribution is differentially private itself. In a second part, we specialise our analysis to the unadjusted Langevin algorithm and stochastic gradient Langevin dynamics and establish guarantees on their (R\'enyi) DP. To this end, we develop a novel methodology based on Girsanov's theorem combined with a perturbation trick to obtain bounds for an unbounded domain and in a non-convex setting. We establish: (i) uniform in $n$ privacy guarantees when the state of the chain after $n$ iterations is released, (ii) bounds on the privacy of the entire chain trajectory. These findings provide concrete guidelines for privacy-preserving MCMC.
Abstract:This paper introduces the Discrete Markov Probabilistic Model (DMPM), a novel algorithm for discrete data generation. The algorithm operates in the space of bits $\{0,1\}^d$, where the noising process is a continuous-time Markov chain that can be sampled exactly via a Poissonian clock that flips labels uniformly at random. The time-reversal process, like the forward noise process, is a jump process, with its intensity governed by a discrete analogue of the classical score function. Crucially, this intensity is proven to be the conditional expectation of a function of the forward process, strengthening its theoretical alignment with score-based generative models while ensuring robustness and efficiency. We further establish convergence bounds for the algorithm under minimal assumptions and demonstrate its effectiveness through experiments on low-dimensional Bernoulli-distributed datasets and high-dimensional binary MNIST data. The results highlight its strong performance in generating discrete structures. This work bridges theoretical foundations and practical applications, advancing the development of effective and theoretically grounded discrete generative modeling.
Abstract:Denoising diffusion models have driven significant progress in the field of Bayesian inverse problems. Recent approaches use pre-trained diffusion models as priors to solve a wide range of such problems, only leveraging inference-time compute and thereby eliminating the need to retrain task-specific models on the same dataset. To approximate the posterior of a Bayesian inverse problem, a diffusion model samples from a sequence of intermediate posterior distributions, each with an intractable likelihood function. This work proposes a novel mixture approximation of these intermediate distributions. Since direct gradient-based sampling of these mixtures is infeasible due to intractable terms, we propose a practical method based on Gibbs sampling. We validate our approach through extensive experiments on image inverse problems, utilizing both pixel- and latent-space diffusion priors, as well as on source separation with an audio diffusion model. The code is available at https://www.github.com/badr-moufad/mgdm
Abstract:In this paper, we present a novel analysis of FedAvg with constant step size, relying on the Markov property of the underlying process. We demonstrate that the global iterates of the algorithm converge to a stationary distribution and analyze its resulting bias and variance relative to the problem's solution. We provide a first-order expansion of the bias in both homogeneous and heterogeneous settings. Interestingly, this bias decomposes into two distinct components: one that depends solely on stochastic gradient noise and another on client heterogeneity. Finally, we introduce a new algorithm based on the Richardson-Romberg extrapolation technique to mitigate this bias.
Abstract:Image watermarking methods are not tailored to handle small watermarked areas. This restricts applications in real-world scenarios where parts of the image may come from different sources or have been edited. We introduce a deep-learning model for localized image watermarking, dubbed the Watermark Anything Model (WAM). The WAM embedder imperceptibly modifies the input image, while the extractor segments the received image into watermarked and non-watermarked areas and recovers one or several hidden messages from the areas found to be watermarked. The models are jointly trained at low resolution and without perceptual constraints, then post-trained for imperceptibility and multiple watermarks. Experiments show that WAM is competitive with state-of-the art methods in terms of imperceptibility and robustness, especially against inpainting and splicing, even on high-resolution images. Moreover, it offers new capabilities: WAM can locate watermarked areas in spliced images and extract distinct 32-bit messages with less than 1 bit error from multiple small regions - no larger than 10% of the image surface - even for small $256\times 256$ images.
Abstract:Reinforcement Learning from Human Feedback (RLHF) has become a popular approach to align language models (LMs) with human preferences. This method involves collecting a large dataset of human pairwise preferences across various text generations and using it to infer (implicitly or explicitly) a reward model. Numerous methods have been proposed to learn the reward model and align a LM with it. However, the costly process of collecting human preferences has received little attention and could benefit from theoretical insights. This paper addresses this issue and aims to formalize the reward training model in RLHF. We frame the selection of an effective dataset as a simple regret minimization task, using a linear contextual dueling bandit method. Given the potentially large number of arms, this approach is more coherent than the best-arm identification setting. We then propose an offline framework for solving this problem. Under appropriate assumptions - linearity of the reward model in the embedding space, and boundedness of the reward parameter - we derive bounds on the simple regret. Finally, we provide a lower bound that matches our upper bound up to constant and logarithmic terms. To our knowledge, this is the first theoretical contribution in this area to provide an offline approach as well as worst-case guarantees.
Abstract:Diffusion models have recently shown considerable potential in solving Bayesian inverse problems when used as priors. However, sampling from the resulting denoising posterior distributions remains a challenge as it involves intractable terms. To tackle this issue, state-of-the-art approaches formulate the problem as that of sampling from a surrogate diffusion model targeting the posterior and decompose its scores into two terms: the prior score and an intractable guidance term. While the former is replaced by the pre-trained score of the considered diffusion model, the guidance term has to be estimated. In this paper, we propose a novel approach that utilises a decomposition of the transitions which, in contrast to previous methods, allows a trade-off between the complexity of the intractable guidance term and that of the prior transitions. We validate the proposed approach through extensive experiments on linear and nonlinear inverse problems, including challenging cases with latent diffusion models as priors, and demonstrate its effectiveness in reconstructing electrocardiogram (ECG) from partial measurements for accurate cardiac diagnosis.
Abstract:Flow Matching (FM) (also referred to as stochastic interpolants or rectified flows) stands out as a class of generative models that aims to bridge in finite time the target distribution $\nu^\star$ with an auxiliary distribution $\mu$, leveraging a fixed coupling $\pi$ and a bridge which can either be deterministic or stochastic. These two ingredients define a path measure which can then be approximated by learning the drift of its Markovian projection. The main contribution of this paper is to provide relatively mild assumptions on $\nu^\star$, $\mu$ and $\pi$ to obtain non-asymptotics guarantees for Diffusion Flow Matching (DFM) models using as bridge the conditional distribution associated with the Brownian motion. More precisely, we establish bounds on the Kullback-Leibler divergence between the target distribution and the one generated by such DFM models under moment conditions on the score of $\nu^\star$, $\mu$ and $\pi$, and a standard $L^2$-drift-approximation error assumption.
Abstract:Investigating noise distribution beyond Gaussian in diffusion generative models is an open problem. The Gaussian case has seen success experimentally and theoretically, fitting a unified SDE framework for score-based and denoising formulations. Recent studies suggest heavy-tailed noise distributions can address mode collapse and manage datasets with class imbalance, heavy tails, or outliers. Yoon et al. (NeurIPS 2023) introduced the L\'evy-Ito model (LIM), extending the SDE framework to heavy-tailed SDEs with $\alpha$-stable noise. Despite its theoretical elegance and performance gains, LIM's complex mathematics may limit its accessibility and broader adoption. This study takes a simpler approach by extending the denoising diffusion probabilistic model (DDPM) with $\alpha$-stable noise, creating the denoising L\'evy probabilistic model (DLPM). Using elementary proof techniques, we show DLPM reduces to running vanilla DDPM with minimal changes, allowing the use of existing implementations with minimal changes. DLPM and LIM have different training algorithms and, unlike the Gaussian case, they admit different backward processes and sampling algorithms. Our experiments demonstrate that DLPM achieves better coverage of data distribution tail, improved generation of unbalanced datasets, and faster computation times with fewer backward steps.