CMLA
Abstract:In this paper, we present a novel analysis of FedAvg with constant step size, relying on the Markov property of the underlying process. We demonstrate that the global iterates of the algorithm converge to a stationary distribution and analyze its resulting bias and variance relative to the problem's solution. We provide a first-order expansion of the bias in both homogeneous and heterogeneous settings. Interestingly, this bias decomposes into two distinct components: one that depends solely on stochastic gradient noise and another on client heterogeneity. Finally, we introduce a new algorithm based on the Richardson-Romberg extrapolation technique to mitigate this bias.
Abstract:Image watermarking methods are not tailored to handle small watermarked areas. This restricts applications in real-world scenarios where parts of the image may come from different sources or have been edited. We introduce a deep-learning model for localized image watermarking, dubbed the Watermark Anything Model (WAM). The WAM embedder imperceptibly modifies the input image, while the extractor segments the received image into watermarked and non-watermarked areas and recovers one or several hidden messages from the areas found to be watermarked. The models are jointly trained at low resolution and without perceptual constraints, then post-trained for imperceptibility and multiple watermarks. Experiments show that WAM is competitive with state-of-the art methods in terms of imperceptibility and robustness, especially against inpainting and splicing, even on high-resolution images. Moreover, it offers new capabilities: WAM can locate watermarked areas in spliced images and extract distinct 32-bit messages with less than 1 bit error from multiple small regions - no larger than 10% of the image surface - even for small $256\times 256$ images.
Abstract:Reinforcement Learning from Human Feedback (RLHF) has become a popular approach to align language models (LMs) with human preferences. This method involves collecting a large dataset of human pairwise preferences across various text generations and using it to infer (implicitly or explicitly) a reward model. Numerous methods have been proposed to learn the reward model and align a LM with it. However, the costly process of collecting human preferences has received little attention and could benefit from theoretical insights. This paper addresses this issue and aims to formalize the reward training model in RLHF. We frame the selection of an effective dataset as a simple regret minimization task, using a linear contextual dueling bandit method. Given the potentially large number of arms, this approach is more coherent than the best-arm identification setting. We then propose an offline framework for solving this problem. Under appropriate assumptions - linearity of the reward model in the embedding space, and boundedness of the reward parameter - we derive bounds on the simple regret. Finally, we provide a lower bound that matches our upper bound up to constant and logarithmic terms. To our knowledge, this is the first theoretical contribution in this area to provide an offline approach as well as worst-case guarantees.
Abstract:Diffusion models have recently shown considerable potential in solving Bayesian inverse problems when used as priors. However, sampling from the resulting denoising posterior distributions remains a challenge as it involves intractable terms. To tackle this issue, state-of-the-art approaches formulate the problem as that of sampling from a surrogate diffusion model targeting the posterior and decompose its scores into two terms: the prior score and an intractable guidance term. While the former is replaced by the pre-trained score of the considered diffusion model, the guidance term has to be estimated. In this paper, we propose a novel approach that utilises a decomposition of the transitions which, in contrast to previous methods, allows a trade-off between the complexity of the intractable guidance term and that of the prior transitions. We validate the proposed approach through extensive experiments on linear and nonlinear inverse problems, including challenging cases with latent diffusion models as priors, and demonstrate its effectiveness in reconstructing electrocardiogram (ECG) from partial measurements for accurate cardiac diagnosis.
Abstract:Flow Matching (FM) (also referred to as stochastic interpolants or rectified flows) stands out as a class of generative models that aims to bridge in finite time the target distribution $\nu^\star$ with an auxiliary distribution $\mu$, leveraging a fixed coupling $\pi$ and a bridge which can either be deterministic or stochastic. These two ingredients define a path measure which can then be approximated by learning the drift of its Markovian projection. The main contribution of this paper is to provide relatively mild assumptions on $\nu^\star$, $\mu$ and $\pi$ to obtain non-asymptotics guarantees for Diffusion Flow Matching (DFM) models using as bridge the conditional distribution associated with the Brownian motion. More precisely, we establish bounds on the Kullback-Leibler divergence between the target distribution and the one generated by such DFM models under moment conditions on the score of $\nu^\star$, $\mu$ and $\pi$, and a standard $L^2$-drift-approximation error assumption.
Abstract:Investigating noise distribution beyond Gaussian in diffusion generative models is an open problem. The Gaussian case has seen success experimentally and theoretically, fitting a unified SDE framework for score-based and denoising formulations. Recent studies suggest heavy-tailed noise distributions can address mode collapse and manage datasets with class imbalance, heavy tails, or outliers. Yoon et al. (NeurIPS 2023) introduced the L\'evy-Ito model (LIM), extending the SDE framework to heavy-tailed SDEs with $\alpha$-stable noise. Despite its theoretical elegance and performance gains, LIM's complex mathematics may limit its accessibility and broader adoption. This study takes a simpler approach by extending the denoising diffusion probabilistic model (DDPM) with $\alpha$-stable noise, creating the denoising L\'evy probabilistic model (DLPM). Using elementary proof techniques, we show DLPM reduces to running vanilla DDPM with minimal changes, allowing the use of existing implementations with minimal changes. DLPM and LIM have different training algorithms and, unlike the Gaussian case, they admit different backward processes and sampling algorithms. Our experiments demonstrate that DLPM achieves better coverage of data distribution tail, improved generation of unbalanced datasets, and faster computation times with fewer backward steps.
Abstract:In economic theory, the concept of externality refers to any indirect effect resulting from an interaction between players that affects the social welfare. Most of the models within which externality has been studied assume that agents have perfect knowledge of their environment and preferences. This is a major hindrance to the practical implementation of many proposed solutions. To address this issue, we consider a two-player bandit setting where the actions of one of the players affect the other player and we extend the Coase theorem [Coase, 1960]. This result shows that the optimal approach for maximizing the social welfare in the presence of externality is to establish property rights, i.e., enable transfers and bargaining between the players. Our work removes the classical assumption that bargainers possess perfect knowledge of the underlying game. We first demonstrate that in the absence of property rights, the social welfare breaks down. We then design a policy for the players which allows them to learn a bargaining strategy which maximizes the total welfare, recovering the Coase theorem under uncertainty.
Abstract:Variational inference (VI) is a popular approach in Bayesian inference, that looks for the best approximation of the posterior distribution within a parametric family, minimizing a loss that is typically the (reverse) Kullback-Leibler (KL) divergence. Despite its empirical success, the theoretical properties of VI have only received attention recently, and mostly when the parametric family is the one of Gaussians. This work aims to contribute to the theoretical study of VI in the non-Gaussian case by investigating the setting of Mixture of Gaussians with fixed covariance and constant weights. In this view, VI over this specific family can be casted as the minimization of a Mollified relative entropy, i.e. the KL between the convolution (with respect to a Gaussian kernel) of an atomic measure supported on Diracs, and the target distribution. The support of the atomic measure corresponds to the localization of the Gaussian components. Hence, solving variational inference becomes equivalent to optimizing the positions of the Diracs (the particles), which can be done through gradient descent and takes the form of an interacting particle system. We study two sources of error of variational inference in this context when optimizing the mollified relative entropy. The first one is an optimization result, that is a descent lemma establishing that the algorithm decreases the objective at each iteration. The second one is an approximation error, that upper bounds the objective between an optimal finite mixture and the target distribution.
Abstract:Variational inference (VI) is a popular approach in Bayesian inference, that looks for the best approximation of the posterior distribution within a parametric family, minimizing a loss that is typically the (reverse) Kullback-Leibler (KL) divergence. Despite its empirical success, the theoretical properties of VI have only received attention recently, and mostly when the parametric family is the one of Gaussians. This work aims to contribute to the theoretical study of VI in the non-Gaussian case by investigating the setting of Mixture of Gaussians with fixed covariance and constant weights. In this view, VI over this specific family can be casted as the minimization of a Mollified relative entropy, i.e. the KL between the convolution (with respect to a Gaussian kernel) of an atomic measure supported on Diracs, and the target distribution. The support of the atomic measure corresponds to the localization of the Gaussian components. Hence, solving variational inference becomes equivalent to optimizing the positions of the Diracs (the particles), which can be done through gradient descent and takes the form of an interacting particle system. We study two sources of error of variational inference in this context when optimizing the mollified relative entropy. The first one is an optimization result, that is a descent lemma establishing that the algorithm decreases the objective at each iteration. The second one is an approximation error, that upper bounds the objective between an optimal finite mixture and the target distribution.
Abstract:Interest in the use of Denoising Diffusion Models (DDM) as priors for solving inverse Bayesian problems has recently increased significantly. However, sampling from the resulting posterior distribution poses a challenge. To solve this problem, previous works have proposed approximations to bias the drift term of the diffusion. In this work, we take a different approach and utilize the specific structure of the DDM prior to define a set of intermediate and simpler posterior sampling problems, resulting in a lower approximation error compared to previous methods. We empirically demonstrate the reconstruction capability of our method for general linear inverse problems using synthetic examples and various image restoration tasks.