Abstract:Image watermarking methods are not tailored to handle small watermarked areas. This restricts applications in real-world scenarios where parts of the image may come from different sources or have been edited. We introduce a deep-learning model for localized image watermarking, dubbed the Watermark Anything Model (WAM). The WAM embedder imperceptibly modifies the input image, while the extractor segments the received image into watermarked and non-watermarked areas and recovers one or several hidden messages from the areas found to be watermarked. The models are jointly trained at low resolution and without perceptual constraints, then post-trained for imperceptibility and multiple watermarks. Experiments show that WAM is competitive with state-of-the art methods in terms of imperceptibility and robustness, especially against inpainting and splicing, even on high-resolution images. Moreover, it offers new capabilities: WAM can locate watermarked areas in spliced images and extract distinct 32-bit messages with less than 1 bit error from multiple small regions - no larger than 10% of the image surface - even for small $256\times 256$ images.
Abstract:Differentially private (DP) machine learning is considered the gold-standard solution for training a model from sensitive data while still preserving privacy. However, a major barrier to achieving this ideal is its sub-optimal privacy-accuracy trade-off, which is particularly visible in DP representation learning. Specifically, it has been shown that under modest privacy budgets, most models learn representations that are not significantly better than hand-crafted features. In this work, we show that effective DP representation learning can be done via image captioning and scaling up to internet-scale multimodal datasets. Through a series of engineering tricks, we successfully train a DP image captioner (DP-Cap) on a 233M subset of LAION-2B from scratch using a reasonable amount of computation, and obtaining unprecedented high-quality image features that can be used in a variety of downstream vision and vision-language tasks. For example, under a privacy budget of $\varepsilon=8$, a linear classifier trained on top of learned DP-Cap features attains 65.8% accuracy on ImageNet-1K, considerably improving the previous SOTA of 56.5%. Our work challenges the prevailing sentiment that high-utility DP representation learning cannot be achieved by training from scratch.
Abstract:This paper investigates the radioactivity of LLM-generated texts, i.e. whether it is possible to detect that such input was used as training data. Conventional methods like membership inference can carry out this detection with some level of accuracy. We show that watermarked training data leaves traces easier to detect and much more reliable than membership inference. We link the contamination level to the watermark robustness, its proportion in the training set, and the fine-tuning process. We notably demonstrate that training on watermarked synthetic instructions can be detected with high confidence (p-value < 1e-5) even when as little as 5% of training text is watermarked. Thus, LLM watermarking, originally designed for detecting machine-generated text, gives the ability to easily identify if the outputs of a watermarked LLM were used to fine-tune another LLM.
Abstract:Training Deep Neural Networks (DNNs) with small batches using Stochastic Gradient Descent (SGD) yields superior test performance compared to larger batches. The specific noise structure inherent to SGD is known to be responsible for this implicit bias. DP-SGD, used to ensure differential privacy (DP) in DNNs' training, adds Gaussian noise to the clipped gradients. Surprisingly, large-batch training still results in a significant decrease in performance, which poses an important challenge because strong DP guarantees necessitate the use of massive batches. We first show that the phenomenon extends to Noisy-SGD (DP-SGD without clipping), suggesting that the stochasticity (and not the clipping) is the cause of this implicit bias, even with additional isotropic Gaussian noise. We theoretically analyse the solutions obtained with continuous versions of Noisy-SGD for the Linear Least Square and Diagonal Linear Network settings, and reveal that the implicit bias is indeed amplified by the additional noise. Thus, the performance issues of large-batch DP-SGD training are rooted in the same underlying principles as SGD, offering hope for potential improvements in large batch training strategies.
Abstract:Differentially Private methods for training Deep Neural Networks (DNNs) have progressed recently, in particular with the use of massive batches and aggregated data augmentations for a large number of steps. These techniques require much more compute than their non-private counterparts, shifting the traditional privacy-accuracy trade-off to a privacy-accuracy-compute trade-off and making hyper-parameter search virtually impossible for realistic scenarios. In this work, we decouple privacy analysis and experimental behavior of noisy training to explore the trade-off with minimal computational requirements. We first use the tools of R\'enyi Differential Privacy (RDP) to show that the privacy budget, when not overcharged, only depends on the total amount of noise (TAN) injected throughout training. We then derive scaling laws for training models with DP-SGD to optimize hyper-parameters with more than a 100 reduction in computational budget. We apply the proposed method on CIFAR-10 and ImageNet and, in particular, strongly improve the state-of-the-art on ImageNet with a +9 points gain in accuracy for a privacy budget epsilon=8.