Abstract:Representations learned by self-supervised approaches are generally considered to possess sufficient generalizability and discriminability. However, we disclose a nontrivial mutual-exclusion relationship between these critical representation properties through an exploratory demonstration on self-supervised learning. State-of-the-art self-supervised methods tend to enhance either generalizability or discriminability but not both simultaneously. Thus, learning representations jointly possessing strong generalizability and discriminability presents a specific challenge for self-supervised learning. To this end, we revisit the learning paradigm of self-supervised learning from the perspective of evolutionary game theory (EGT) and outline the theoretical roadmap to achieve a desired trade-off between these representation properties. EGT performs well in analyzing the trade-off point in a two-player game by utilizing dynamic system modeling. However, the EGT analysis requires sufficient annotated data, which contradicts the principle of self-supervised learning, i.e., the EGT analysis cannot be conducted without the annotations of the specific target domain for self-supervised learning. Thus, to enhance the methodological generalization, we propose a novel self-supervised learning method that leverages advancements in reinforcement learning to jointly benefit from the general guidance of EGT and sequentially optimize the model to chase the consistent improvement of generalizability and discriminability for specific target domains during pre-training. Theoretically, we establish that the proposed method tightens the generalization error upper bound of self-supervised learning. Empirically, our method achieves state-of-the-art performance on various benchmarks.
Abstract:Communication stands as a potent mechanism to harmonize the behaviors of multiple agents. However, existing works primarily concentrate on broadcast communication, which not only lacks practicality, but also leads to information redundancy. This surplus, one-fits-all information could adversely impact the communication efficiency. Furthermore, existing works often resort to basic mechanisms to integrate observed and received information, impairing the learning process. To tackle these difficulties, we propose Targeted and Trusted Multi-Agent Communication (T2MAC), a straightforward yet effective method that enables agents to learn selective engagement and evidence-driven integration. With T2MAC, agents have the capability to craft individualized messages, pinpoint ideal communication windows, and engage with reliable partners, thereby refining communication efficiency. Following the reception of messages, the agents integrate information observed and received from different sources at an evidence level. This process enables agents to collectively use evidence garnered from multiple perspectives, fostering trusted and cooperative behaviors. We evaluate our method on a diverse set of cooperative multi-agent tasks, with varying difficulties, involving different scales and ranging from Hallway, MPE to SMAC. The experiments indicate that the proposed model not only surpasses the state-of-the-art methods in terms of cooperative performance and communication efficiency, but also exhibits impressive generalization.
Abstract:Detecting events from social media data streams is gradually attracting researchers. The innate challenge for detecting events is to extract discriminative information from social media data thereby assigning the data into different events. Due to the excessive diversity and high updating frequency of social data, using supervised approaches to detect events from social messages is hardly achieved. To this end, recent works explore learning discriminative information from social messages by leveraging graph contrastive learning (GCL) and embedding clustering in an unsupervised manner. However, two intrinsic issues exist in benchmark methods: conventional GCL can only roughly explore partial attributes, thereby insufficiently learning the discriminative information of social messages; for benchmark methods, the learned embeddings are clustered in the latent space by taking advantage of certain specific prior knowledge, which conflicts with the principle of unsupervised learning paradigm. In this paper, we propose a novel unsupervised social media event detection method via hybrid graph contrastive learning and reinforced incremental clustering (HCRC), which uses hybrid graph contrastive learning to comprehensively learn semantic and structural discriminative information from social messages and reinforced incremental clustering to perform efficient clustering in a solidly unsupervised manner. We conduct comprehensive experiments to evaluate HCRC on the Twitter and Maven datasets. The experimental results demonstrate that our approach yields consistent significant performance boosts. In traditional incremental setting, semi-supervised incremental setting and solidly unsupervised setting, the model performance has achieved maximum improvements of 53%, 45%, and 37%, respectively.