Abstract:Procedural Content Generation via Reinforcement Learning (PCGRL) has been introduced as a means by which controllable designer agents can be trained based only on a set of computable metrics acting as a proxy for the level's quality and key characteristics. While PCGRL offers a unique set of affordances for game designers, it is constrained by the compute-intensive process of training RL agents, and has so far been limited to generating relatively small levels. To address this issue of scale, we implement several PCGRL environments in Jax so that all aspects of learning and simulation happen in parallel on the GPU, resulting in faster environment simulation; removing the CPU-GPU transfer of information bottleneck during RL training; and ultimately resulting in significantly improved training speed. We replicate several key results from prior works in this new framework, letting models train for much longer than previously studied, and evaluating their behavior after 1 billion timesteps. Aiming for greater control for human designers, we introduce randomized level sizes and frozen "pinpoints" of pivotal game tiles as further ways of countering overfitting. To test the generalization ability of learned generators, we evaluate models on large, out-of-distribution map sizes, and find that partial observation sizes learn more robust design strategies.
Abstract:The current retinal artificial intelligence models were trained using data with a limited category of diseases and limited knowledge. In this paper, we present a retinal vision-language foundation model (RetiZero) with knowledge of over 400 fundus diseases. Specifically, we collected 341,896 fundus images paired with text descriptions from 29 publicly available datasets, 180 ophthalmic books, and online resources, encompassing over 400 fundus diseases across multiple countries and ethnicities. RetiZero achieved outstanding performance across various downstream tasks, including zero-shot retinal disease recognition, image-to-image retrieval, internal domain and cross-domain retinal disease classification, and few-shot fine-tuning. Specially, in the zero-shot scenario, RetiZero achieved a Top5 score of 0.8430 and 0.7561 on 15 and 52 fundus diseases respectively. In the image-retrieval task, RetiZero achieved a Top5 score of 0.9500 and 0.8860 on 15 and 52 retinal diseases respectively. Furthermore, clinical evaluations by ophthalmology experts from different countries demonstrate that RetiZero can achieve performance comparable to experienced ophthalmologists using zero-shot and image retrieval methods without requiring model retraining. These capabilities of retinal disease identification strengthen our RetiZero foundation model in clinical implementation.
Abstract:Path of Destruction (PoD) is a self-supervised method for learning iterative generators. The core idea is to produce a training set by destroying a set of artifacts, and for each destructive step create a training instance based on the corresponding repair action. A generator trained on this dataset can then generate new artifacts by repairing from arbitrary states. The PoD method is very data-efficient in terms of original training examples and well-suited to functional artifacts composed of categorical data, such as game levels and discrete 3D structures. In this paper, we extend the Path of Destruction method to allow designer control over aspects of the generated artifacts. Controllability is introduced by adding conditional inputs to the state-action pairs that make up the repair trajectories. We test the controllable PoD method in a 2D dungeon setting, as well as in the domain of small 3D Lego cars.
Abstract:This work expands on previous advancements in genetic fingerprint spoofing via the DeepMasterPrints and introduces Diversity and Novelty MasterPrints. This system uses quality diversity evolutionary algorithms to generate dictionaries of artificial prints with a focus on increasing coverage of users from the dataset. The Diversity MasterPrints focus on generating solution prints that match with users not covered by previously found prints, and the Novelty MasterPrints explicitly search for prints with more that are farther in user space than previous prints. Our multi-print search methodologies outperform the singular DeepMasterPrints in both coverage and generalization while maintaining quality of the fingerprint image output.
Abstract:Procedural Content Generation via Reinforcement Learning (PCGRL) foregoes the need for large human-authored data-sets and allows agents to train explicitly on functional constraints, using computable, user-defined measures of quality instead of target output. We explore the application of PCGRL to 3D domains, in which content-generation tasks naturally have greater complexity and potential pertinence to real-world applications. Here, we introduce several PCGRL tasks for the 3D domain, Minecraft (Mojang Studios, 2009). These tasks will challenge RL-based generators using affordances often found in 3D environments, such as jumping, multiple dimensional movement, and gravity. We train an agent to optimize each of these tasks to explore the capabilities of previous research in PCGRL. This agent is able to generate relatively complex and diverse levels, and generalize to random initial states and control targets. Controllability tests in the presented tasks demonstrate their utility to analyze success and failure for 3D generators.