Abstract:In robotic inspection, joint registration of multiple point clouds is an essential technique for estimating the transformation relationships between measured parts, such as multiple blades in a propeller. However, the presence of noise and outliers in the data can significantly impair the registration performance by affecting the correctness of correspondences. To address this issue, we incorporate local consistency property into the probability-based joint registration method. Specifically, each measured point set is treated as a sample from an unknown Gaussian Mixture Model (GMM), and the registration problem is framed as estimating the probability model. By incorporating local consistency into the optimization process, we enhance the robustness and accuracy of the posterior distributions, which represent the one-to-all correspondences that directly determine the registration results. Effective closed-form solution for transformation and probability parameters are derived with Expectation-Maximization (EM) algorithm. Extensive experiments demonstrate that our method outperforms the existing methods, achieving high accuracy and robustness with the existence of noise and outliers. The code will be available at https://github.com/sulingjie/JPRLC_registration.
Abstract:Zero-shot anomaly detection (ZSAD) targets the identification of anomalies within images from arbitrary novel categories. This study introduces AdaCLIP for the ZSAD task, leveraging a pre-trained vision-language model (VLM), CLIP. AdaCLIP incorporates learnable prompts into CLIP and optimizes them through training on auxiliary annotated anomaly detection data. Two types of learnable prompts are proposed: static and dynamic. Static prompts are shared across all images, serving to preliminarily adapt CLIP for ZSAD. In contrast, dynamic prompts are generated for each test image, providing CLIP with dynamic adaptation capabilities. The combination of static and dynamic prompts is referred to as hybrid prompts, and yields enhanced ZSAD performance. Extensive experiments conducted across 14 real-world anomaly detection datasets from industrial and medical domains indicate that AdaCLIP outperforms other ZSAD methods and can generalize better to different categories and even domains. Finally, our analysis highlights the importance of diverse auxiliary data and optimized prompts for enhanced generalization capacity. Code is available at https://github.com/caoyunkang/AdaCLIP.
Abstract:Robustness against noisy imaging is crucial for practical image anomaly detection systems. This study introduces a Robust Anomaly Detection (RAD) dataset with free views, uneven illuminations, and blurry collections to systematically evaluate the robustness of current anomaly detection methods. Specifically, RAD aims to identify foreign objects on working platforms as anomalies. The collection process incorporates various sources of imaging noise, such as viewpoint changes, uneven illuminations, and blurry collections, to replicate real-world inspection scenarios. Subsequently, we assess and analyze 11 state-of-the-art unsupervised and zero-shot methods on RAD. Our findings indicate that: 1) Variations in viewpoint, illumination, and blurring affect anomaly detection methods to varying degrees; 2) Methods relying on memory banks and assisted by synthetic anomalies demonstrate stronger robustness; 3) Effectively leveraging the general knowledge of foundational models is a promising avenue for enhancing the robustness of anomaly detection methods.
Abstract:Visual Anomaly Detection (VAD) endeavors to pinpoint deviations from the concept of normality in visual data, widely applied across diverse domains, e.g., industrial defect inspection, and medical lesion detection. This survey comprehensively examines recent advancements in VAD by identifying three primary challenges: 1) scarcity of training data, 2) diversity of visual modalities, and 3) complexity of hierarchical anomalies. Starting with a brief overview of the VAD background and its generic concept definitions, we progressively categorize, emphasize, and discuss the latest VAD progress from the perspective of sample number, data modality, and anomaly hierarchy. Through an in-depth analysis of the VAD field, we finally summarize future developments for VAD and conclude the key findings and contributions of this survey.
Abstract:This technical report introduces the winning solution of the team \textit{Segment Any Anomaly} for the CVPR2023 Visual Anomaly and Novelty Detection (VAND) challenge. Going beyond uni-modal prompt, \textit{e.g.}, language prompt, we present a novel framework, \textit{i.e.}, Segment Any Anomaly + (SAA$+$), for zero-shot anomaly segmentation with multi-modal prompts for the regularization of cascaded modern foundation models. Inspired by the great zero-shot generalization ability of foundation models like Segment Anything, we first explore their assembly (SAA) to leverage diverse multi-modal prior knowledge for anomaly localization. Subsequently, we further introduce multimodal prompts (SAA$+$) derived from domain expert knowledge and target image context to enable the non-parameter adaptation of foundation models to anomaly segmentation. The proposed SAA$+$ model achieves state-of-the-art performance on several anomaly segmentation benchmarks, including VisA and MVTec-AD, in the zero-shot setting. We will release the code of our winning solution for the CVPR2023 VAND challenge at \href{Segment-Any-Anomaly}{https://github.com/caoyunkang/Segment-Any-Anomaly} \footnote{The extended-version paper with more details is available at ~\cite{cao2023segment}.}
Abstract:We present a novel framework, i.e., Segment Any Anomaly + (SAA+), for zero-shot anomaly segmentation with hybrid prompt regularization to improve the adaptability of modern foundation models. Existing anomaly segmentation models typically rely on domain-specific fine-tuning, limiting their generalization across countless anomaly patterns. In this work, inspired by the great zero-shot generalization ability of foundation models like Segment Anything, we first explore their assembly to leverage diverse multi-modal prior knowledge for anomaly localization. For non-parameter foundation model adaptation to anomaly segmentation, we further introduce hybrid prompts derived from domain expert knowledge and target image context as regularization. Our proposed SAA+ model achieves state-of-the-art performance on several anomaly segmentation benchmarks, including VisA, MVTec-AD, MTD, and KSDD2, in the zero-shot setting. We will release the code at \href{https://github.com/caoyunkang/Segment-Any-Anomaly}{https://github.com/caoyunkang/Segment-Any-Anomaly}.