Abstract:Deep neural networks (DNNs) are powerful for cognitive tasks such as image classification, object detection, and scene segmentation. One drawback however is the significant high computational complexity and memory consumption, which makes them unfeasible to run real-time on embedded platforms because of the limited hardware resources. Block floating point (BFP) quantization is one of the representative compression approaches for reducing the memory and computational burden owing to their capability to effectively capture the broad data distribution of DNN models. Unfortunately, prior works on BFP-based quantization empirically choose the block size and the precision that preserve accuracy. In this paper, we develop a BFP-based bitwidth-aware analytical modeling framework (called ``BitQ'') for the best BFP implementation of DNN inference on embedded platforms. We formulate and resolve an optimization problem to identify the optimal BFP block size and bitwidth distribution by the trade-off of both accuracy and performance loss. Experimental results show that compared with an equal bitwidth setting, the BFP DNNs with optimized bitwidth allocation provide efficient computation, preserving accuracy on famous benchmarks. The source code and data are available at https://github.com/Cheliosoops/BitQ.
Abstract:Visible-infrared person re-identification (VI-ReID) aims to match people with the same identity between visible and infrared modalities. VI-ReID is a challenging task due to the large differences in individual appearance under different modalities. Existing methods generally try to bridge the cross-modal differences at image or feature level, which lacks exploring the discriminative embeddings. Effectively minimizing these cross-modal discrepancies relies on obtaining representations that are guided by identity and consistent across modalities, while also filtering out representations that are irrelevant to identity. To address these challenges, we introduce a dynamic identity-guided attention network (DIAN) to mine identity-guided and modality-consistent embeddings, facilitating effective bridging the gap between different modalities. Specifically, in DIAN, to pursue a semantically richer representation, we first use orthogonal projection to fuse the features from two connected coarse and fine layers. Furthermore, we first use dynamic convolution kernels to mine identity-guided and modality-consistent representations. More notably, a cross embedding balancing loss is introduced to effectively bridge cross-modal discrepancies by above embeddings. Experimental results on SYSU-MM01 and RegDB datasets show that DIAN achieves state-of-the-art performance. Specifically, for indoor search on SYSU-MM01, our method achieves 86.28% rank-1 accuracy and 87.41% mAP, respectively. Our code will be available soon.
Abstract:Streaming data clustering is a popular research topic in the fields of data mining and machine learning. Compared to static data, streaming data, which is usually analyzed in data chunks, is more susceptible to encountering the dynamic cluster imbalanced issue. That is, the imbalanced degree of clusters varies in different streaming data chunks, leading to corruption in either the accuracy or the efficiency of streaming data analysis based on existing clustering methods. Therefore, we propose an efficient approach called Learning Self-Refined Organizing Map (LSROM) to handle the imbalanced streaming data clustering problem, where we propose an advanced SOM for representing the global data distribution. The constructed SOM is first refined for guiding the partition of the dataset to form many micro-clusters to avoid the missing small clusters in imbalanced data. Then an efficient merging of the micro-clusters is conducted through quick retrieval based on the SOM, which can automatically yield a true number of imbalanced clusters. In comparison to existing imbalanced data clustering approaches, LSROM is with a lower time complexity $O(n\log n)$, while achieving very competitive clustering accuracy. Moreover, LSROM is interpretable and insensitive to hyper-parameters. Extensive experiments have verified its efficacy.