Department of Computer Science, Stony Brook University
Abstract:Acoustic spatial capture-recapture (ASCR) surveys with an array of synchronized acoustic detectors can be an effective way of estimating animal density or call density. However, constructing the capture histories required for ASCR analysis is challenging, as recognizing which detections at different detectors are of which calls is not a trivial task. Because calls from different distances take different times to arrive at detectors, the order in which calls are detected is not necessarily the same as the order in which they are made, and without knowing which detections are of the same call, we do not know how many different calls are detected. We propose a Monte Carlo expectation-maximization (MCEM) estimation method to resolve this unknown call identity problem. To implement the MCEM method in this context, we sample the latent variables from a complete-data likelihood model in the expectation step and use a semi-complete-data likelihood or conditional likelihood in the maximization step. We use a parametric bootstrap to obtain confidence intervals. When we apply our method to a survey of moss frogs, it gives an estimate within 15% of the estimate obtained using data with call capture histories constructed by experts, and unlike this latter estimate, our confidence interval incorporates the uncertainty about call identities. Simulations show it to have a low bias (6%) and coverage probabilities close to the nominal 95% value.
Abstract:The 7-point checklist (7PCL) is widely used in dermoscopy to identify malignant melanoma lesions needing urgent medical attention. It assigns point values to seven attributes: major attributes are worth two points each, and minor ones are worth one point each. A total score of three or higher prompts further evaluation, often including a biopsy. However, a significant limitation of current methods is the uniform weighting of attributes, which leads to imprecision and neglects their interconnections. Previous deep learning studies have treated the prediction of each attribute with the same importance as predicting melanoma, which fails to recognize the clinical significance of the attributes for melanoma. To address these limitations, we introduce a novel diagnostic method that integrates two innovative elements: a Clinical Knowledge-Based Topological Graph (CKTG) and a Gradient Diagnostic Strategy with Data-Driven Weighting Standards (GD-DDW). The CKTG integrates 7PCL attributes with diagnostic information, revealing both internal and external associations. By employing adaptive receptive domains and weighted edges, we establish connections among melanoma's relevant features. Concurrently, GD-DDW emulates dermatologists' diagnostic processes, who first observe the visual characteristics associated with melanoma and then make predictions. Our model uses two imaging modalities for the same lesion, ensuring comprehensive feature acquisition. Our method shows outstanding performance in predicting malignant melanoma and its features, achieving an average AUC value of 85%. This was validated on the EDRA dataset, the largest publicly available dataset for the 7-point checklist algorithm. Specifically, the integrated weighting system can provide clinicians with valuable data-driven benchmarks for their evaluations.
Abstract:Passive acoustic monitoring can be an effective way of monitoring wildlife populations that are acoustically active but difficult to survey visually. Digital recorders allow surveyors to gather large volumes of data at low cost, but identifying target species vocalisations in these data is non-trivial. Machine learning (ML) methods are often used to do the identification. They can process large volumes of data quickly, but they do not detect all vocalisations and they do generate some false positives (vocalisations that are not from the target species). Existing wildlife abundance survey methods have been designed specifically to deal with the first of these mistakes, but current methods of dealing with false positives are not well-developed. They do not take account of features of individual vocalisations, some of which are more likely to be false positives than others. We propose three methods for acoustic spatial capture-recapture inference that integrate individual-level measures of confidence from ML vocalisation identification into the likelihood and hence integrate ML uncertainty into inference. The methods include a mixture model in which species identity is a latent variable. We test the methods by simulation and find that in a scenario based on acoustic data from Hainan gibbons, in which ignoring false positives results in 17% positive bias, our methods give negligible bias and coverage probabilities that are close to the nominal 95% level.
Abstract:Knowledge representation and reasoning (KRR) systems describe and reason with complex concepts and relations in the form of facts and rules. Unfortunately, wide deployment of KRR systems runs into the problem that domain experts have great difficulty constructing correct logical representations of their domain knowledge. Knowledge engineers can help with this construction process, but there is a deficit of such specialists. The earlier Knowledge Authoring Logic Machine (KALM) based on Controlled Natural Language (CNL) was shown to have very high accuracy for authoring facts and questions. More recently, KALMFL, a successor of KALM, replaced CNL with factual English, which is much less restrictive and requires very little training from users. However, KALMFL has limitations in representing certain types of knowledge, such as authoring rules for multi-step reasoning or understanding actions with timestamps. To address these limitations, we propose KALMRA to enable authoring of rules and actions. Our evaluation using the UTI guidelines benchmark shows that KALMRA achieves a high level of correctness (100%) on rule authoring. When used for authoring and reasoning with actions, KALMRA achieves more than 99.3% correctness on the bAbI benchmark, demonstrating its effectiveness in more sophisticated KRR jobs. Finally, we illustrate the logical reasoning capabilities of KALMRA by drawing attention to the problems faced by the recently made famous AI, ChatGPT.
Abstract:Knowledge representation and reasoning (KRR) systems represent knowledge as collections of facts and rules. Like databases, KRR systems contain information about domains of human activities like industrial enterprises, science, and business. KRRs can represent complex concepts and relations, and they can query and manipulate information in sophisticated ways. Unfortunately, the KRR technology has been hindered by the fact that specifying the requisite knowledge requires skills that most domain experts do not have, and professional knowledge engineers are hard to find. One solution could be to extract knowledge from English text, and a number of works have attempted to do so (OpenSesame, Google's Sling, etc.). Unfortunately, at present, extraction of logical facts from unrestricted natural language is still too inaccurate to be used for reasoning, while restricting the grammar of the language (so-called controlled natural language, or CNL) is hard for the users to learn and use. Nevertheless, some recent CNL-based approaches, such as the Knowledge Authoring Logic Machine (KALM), have shown to have very high accuracy compared to others, and a natural question is to what extent the CNL restrictions can be lifted. In this paper, we address this issue by transplanting the KALM framework to a neural natural language parser, mStanza. Here we limit our attention to authoring facts and queries and therefore our focus is what we call factual English statements. Authoring other types of knowledge, such as rules, will be considered in our followup work. As it turns out, neural network based parsers have problems of their own and the mistakes they make range from part-of-speech tagging to lemmatization to dependency errors. We present a number of techniques for combating these problems and test the new system, KALMFL (i.e., KALM for factual language), on a number of benchmarks, which show KALMFL achieves correctness in excess of 95%.
Abstract:Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide. Over the last few years, computer-aided diagnosis has been rapidly developed and make great progress in healthcare and medical practices due to the advances in artificial intelligence. However, most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices. In this case, knowledge distillation (KD) has been proven as an efficient tool to help improve the adaptability of lightweight models under limited resources, meanwhile keeping a high-level representation capability. To bridge the gap, this study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification. Our method models an intra-instance relational feature representation and integrates it with existing KD research. A dual relational knowledge distillation architecture is self-supervisedly trained while the weighted softened outputs are also exploited to enable the student model to capture richer knowledge from the teacher model. To demonstrate the effectiveness of our method, we conduct experiments on ISIC 2019, a large-scale open-accessed benchmark of skin diseases dermoscopic images. Experiments show that our distilled lightweight model can achieve an accuracy as high as 85% for the classification tasks of 8 different skin diseases with minimal parameters and computing requirements. Ablation studies confirm the effectiveness of our intra- and inter-instance relational knowledge integration strategy. Compared with state-of-the-art knowledge distillation techniques, the proposed method demonstrates improved performances for multi-diseases classification on the large-scale dermoscopy database.
Abstract:We offer a historical overview of methodologies for quantifying the notion of risk and optimizing risk-aware autonomous systems, with emphasis on risk-averse settings in which safety may be critical. We categorize and present state-of-the-art approaches, and we describe connections between such approaches and ideas from the fields of decision theory, operations research, reinforcement learning, and stochastic control. The first part of the review focuses on model-based risk-averse methods. The second part discusses methods that blend model-based and model-free techniques for the purpose of designing policies with improved adaptive capabilities. We conclude by highlighting areas for future research.
Abstract:Waste recycling is an important way of saving energy and materials in the production process. In general cases recyclable objects are mixed with unrecyclable objects, which raises a need for identification and classification. This paper proposes a convolutional neural network (CNN) model to complete both tasks. The model uses transfer learning from a pretrained Resnet-50 CNN to complete feature extraction. A subsequent fully connected layer for classification was trained on the augmented TrashNet dataset [1]. In the application, sliding-window is used for image segmentation in the pre-classification stage. In the post-classification stage, the labelled sample points are integrated with Gaussian Clustering to locate the object. The resulting model has achieved an overall detection rate of 48.4% in simulation and final classification accuracy of 92.4%.