Abstract:Pre-trained models learn general representations from large datsets which can be fine-turned for specific tasks to significantly reduce training time. Pre-trained models like generative pretrained transformers (GPT), bidirectional encoder representations from transformers (BERT), vision transfomers (ViT) have become a cornerstone of current research in machine learning. This study proposes a multi-modal movie recommendation system by extract features of the well designed posters for each movie and the narrative text description of the movie. This system uses the BERT model to extract the information of text modality, the ViT model applied to extract the information of poster/image modality, and the Transformer architecture for feature fusion of all modalities to predict users' preference. The integration of pre-trained foundational models with some smaller data sets in downstream applications capture multi-modal content features in a more comprehensive manner, thereby providing more accurate recommendations. The efficiency of the proof-of-concept model is verified by the standard benchmark problem the MovieLens 100K and 1M datasets. The prediction accuracy of user ratings is enhanced in comparison to the baseline algorithm, thereby demonstrating the potential of this cross-modal algorithm to be applied for movie or video recommendation.
Abstract:The increase in academic dishonesty cases among college students has raised concern, particularly due to the shift towards online learning caused by the pandemic. We aim to develop and implement a method capable of generating tailored questions for each student. The use of Automatic Question Generation (AQG) is a possible solution. Previous studies have investigated AQG frameworks in education, which include validity, user-defined difficulty, and personalized problem generation. Our new AQG approach produces logical equivalence problems for Discrete Mathematics, which is a core course for year-one computer science students. This approach utilizes a syntactic grammar and a semantic attribute system through top-down parsing and syntax tree transformations. Our experiments show that the difficulty level of questions generated by our AQG approach is similar to the questions presented to students in the textbook [1]. These results confirm the practicality of our AQG approach for automated question generation in education, with the potential to significantly enhance learning experiences.