Abstract:Conversational agents leveraging AI, particularly deep learning, are emerging in both academic research and real-world applications. However, these applications still face challenges, including disrespecting knowledge and facts, not personalizing to user preferences, and enormous demand for computational resources during training and inference. Recent research efforts have been focused on addressing these challenges from various aspects, including supplementing various types of auxiliary information to the conversational agents. However, existing methods are still not able to effectively and efficiently exploit relevant information from these auxiliary supplements to further unleash the power of the conversational agents and the language models they use. In this paper, we present a novel method, PK-NCLI, that is able to accurately and efficiently identify relevant auxiliary information to improve the quality of conversational responses by learning the relevance among persona, chat history, and knowledge background through low-level normalized contextual latent interaction. Our experimental results indicate that PK-NCLI outperforms the state-of-the-art method, PK-FoCus, by 47.80%/30.61%/24.14% in terms of perplexity, knowledge grounding, and training efficiency, respectively, and maintained the same level of persona grounding performance. We also provide a detailed analysis of how different factors, including language model choices and trade-offs on training weights, would affect the performance of PK-NCLI.
Abstract:Machine learning software can generate models that inappropriately discriminate against specific protected social groups (e.g., groups based on gender, ethnicity, etc). Motivated by those results, software engineering researchers have proposed many methods for mitigating those discriminatory effects. While those methods are effective in mitigating bias, few of them can provide explanations on what is the cause of bias. Here we propose xFAIR, a model-based extrapolation method, that is capable of both mitigating bias and explaining the cause. In our xFAIR approach, protected attributes are represented by models learned from the other independent variables (and these models offer extrapolations over the space between existing examples). We then use the extrapolation models to relabel protected attributes, which aims to offset the biased predictions of the classification model via rebalancing the distribution of protected attributes. The experiments of this paper show that, without compromising(original) model performance,xFAIRcan achieve significantly better group and individual fairness (as measured in different metrics)than benchmark methods. Moreover, when compared to another instance-based rebalancing method, our model-based approach shows faster runtime and thus better scalability
Abstract:Can we simplify explanations for software analytics? Maybe. Recent results show that systems often exhibit a "keys effect"; i.e. a few key features control the rest. Just to say the obvious, for systems controlled by a few keys, explanation and control is just a matter of running a handful of "what-if" queries across the keys. By exploiting the keys effect, it should be possible to dramatically simplify even complex explanations, such as those required for ethical AI systems.