LIA
Abstract:In this paper, we introduce TEDxTN, the first publicly available Tunisian Arabic to English speech translation dataset. This work is in line with the ongoing effort to mitigate the data scarcity obstacle for a number of Arabic dialects. We collected, segmented, transcribed and translated 108 TEDx talks following our internally developed annotations guidelines. The collected talks represent 25 hours of speech with code-switching that cover speakers with various accents from over 11 different regions of Tunisia. We make the annotation guidelines and corpus publicly available. This will enable the extension of TEDxTN to new talks as they become available. We also report results for strong baseline systems of Speech Recognition and Speech Translation using multiple pre-trained and fine-tuned end-to-end models. This corpus is the first open source and publicly available speech translation corpus of Code-Switching Tunisian dialect. We believe that this is a valuable resource that can motivate and facilitate further research on the natural language processing of Tunisian Dialect.




Abstract:We present ADI-20, an extension of the previously published ADI-17 Arabic Dialect Identification (ADI) dataset. ADI-20 covers all Arabic-speaking countries' dialects. It comprises 3,556 hours from 19 Arabic dialects in addition to Modern Standard Arabic (MSA). We used this dataset to train and evaluate various state-of-the-art ADI systems. We explored fine-tuning pre-trained ECAPA-TDNN-based models, as well as Whisper encoder blocks coupled with an attention pooling layer and a classification dense layer. We investigated the effect of (i) training data size and (ii) the model's number of parameters on identification performance. Our results show a small decrease in F1 score while using only 30% of the original training data. We open-source our collected data and trained models to enable the reproduction of our work, as well as support further research in ADI.
Abstract:This paper describes Elyadata \& LIA's joint submission to the NADI multi-dialectal Arabic Speech Processing 2025. We participated in the Spoken Arabic Dialect Identification (ADI) and multi-dialectal Arabic ASR subtasks. Our submission ranked first for the ADI subtask and second for the multi-dialectal Arabic ASR subtask among all participants. Our ADI system is a fine-tuned Whisper-large-v3 encoder with data augmentation. This system obtained the highest ADI accuracy score of \textbf{79.83\%} on the official test set. For multi-dialectal Arabic ASR, we fine-tuned SeamlessM4T-v2 Large (Egyptian variant) separately for each of the eight considered dialects. Overall, we obtained an average WER and CER of \textbf{38.54\%} and \textbf{14.53\%}, respectively, on the test set. Our results demonstrate the effectiveness of large pre-trained speech models with targeted fine-tuning for Arabic speech processing.



Abstract:In Self-Supervised Learning (SSL), pre-training and evaluation are resource intensive. In the speech domain, current indicators of the quality of SSL models during pre-training, such as the loss, do not correlate well with downstream performance. Consequently, it is often difficult to gauge the final downstream performance in a cost efficient manner during pre-training. In this work, we propose unsupervised efficient methods that give insights into the quality of the pre-training of SSL speech models, namely, measuring the cluster quality and rank of the embeddings of the SSL model. Results show that measures of cluster quality and rank correlate better with downstream performance than the pre-training loss with only one hour of unlabeled audio, reducing the need for GPU hours and labeled data in SSL model evaluation.



Abstract:Self-Supervised Learning (SSL) has proven to be effective in various domains, including speech processing. However, SSL is computationally and memory expensive. This is in part due the quadratic complexity of multi-head self-attention (MHSA). Alternatives for MHSA have been proposed and used in the speech domain, but have yet to be investigated properly in an SSL setting. In this work, we study the effects of replacing MHSA with recent state-of-the-art alternatives that have linear complexity, namely, HyperMixing, Fastformer, SummaryMixing, and Mamba. We evaluate these methods by looking at the speed, the amount of VRAM consumed, and the performance on the SSL MP3S benchmark. Results show that these linear alternatives maintain competitive performance compared to MHSA while, on average, decreasing VRAM consumption by around 20% to 60% and increasing speed from 7% to 65% for input sequences ranging from 20 to 80 seconds.
Abstract:Speech resynthesis is a generic task for which we want to synthesize audio with another audio as input, which finds applications for media monitors and journalists.Among different tasks addressed by speech resynthesis, voice conversion preserves the linguistic information while modifying the identity of the speaker, and speech edition preserves the identity of the speaker but some words are modified.In both cases, we need to disentangle speaker and phonetic contents in intermediate representations.Phonetic PosteriorGrams (PPG) are a frame-level probabilistic representation of phonemes, and are usually considered speaker-independent.This paper presents a PPG-based speech resynthesis system.A perceptive evaluation assesses that it produces correct audio quality.Then, we demonstrate that an automatic speaker verification model is not able to recover the source speaker after re-synthesis with PPG, even when the model is trained on synthetic data.




Abstract:In this work, we detail our submission to the 2024 edition of the MSP-Podcast Speech Emotion Recognition (SER) Challenge. This challenge is divided into two distinct tasks: Categorical Emotion Recognition and Emotional Attribute Prediction. We concentrated our efforts on Task 1, which involves the categorical classification of eight emotional states using data from the MSP-Podcast dataset. Our approach employs an ensemble of models, each trained independently and then fused at the score level using a Support Vector Machine (SVM) classifier. The models were trained using various strategies, including Self-Supervised Learning (SSL) fine-tuning across different modalities: speech alone, text alone, and a combined speech and text approach. This joint training methodology aims to enhance the system's ability to accurately classify emotional states. This joint training methodology aims to enhance the system's ability to accurately classify emotional states. Thus, the system obtained F1-macro of 0.35\% on development set.
Abstract:Speech encoders pretrained through self-supervised learning (SSL) have demonstrated remarkable performance in various downstream tasks, including Spoken Language Understanding (SLU) and Automatic Speech Recognition (ASR). For instance, fine-tuning SSL models for such tasks has shown significant potential, leading to improvements in the SOTA performance across challenging datasets. In contrast to existing research, this paper contributes by comparing the effectiveness of SSL approaches in the context of (i) the low-resource spoken Tunisian Arabic dialect and (ii) its combination with a low-resource SLU and ASR scenario, where only a few semantic annotations are available for fine-tuning. We conduct experiments using many SSL speech encoders on the TARIC-SLU dataset. We use speech encoders that were pre-trained on either monolingual or multilingual speech data. Some of them have also been refined without in-domain nor Tunisian data through multimodal supervised teacher-student paradigm. This study yields numerous significant findings that we are discussing in this paper.
Abstract:In spoken Task-Oriented Dialogue (TOD) systems, the choice of the semantic representation describing the users' requests is key to a smooth interaction. Indeed, the system uses this representation to reason over a database and its domain knowledge to choose its next action. The dialogue course thus depends on the information provided by this semantic representation. While textual datasets provide fine-grained semantic representations, spoken dialogue datasets fall behind. This paper provides insights into automatic enhancement of spoken dialogue datasets' semantic representations. Our contributions are three fold: (1) assess the relevance of Large Language Model fine-tuning, (2) evaluate the knowledge captured by the produced annotations and (3) highlight semi-automatic annotation implications.
Abstract:Self-Supervised Learning is vastly used to efficiently represent speech for Spoken Language Understanding, gradually replacing conventional approaches. Meanwhile, textual SSL models are proposed to encode language-agnostic semantics. SAMU-XLSR framework employed this semantic information to enrich multilingual speech representations. A recent study investigated SAMU-XLSR in-domain semantic enrichment by specializing it on downstream transcriptions, leading to state-of-the-art results on a challenging SLU task. This study's interest lies in the loss of multilingual performances and lack of specific-semantics training induced by such specialization in close languages without any SLU implication. We also consider SAMU-XLSR's loss of initial cross-lingual abilities due to a separate SLU fine-tuning. Therefore, this paper proposes a dual task learning approach to improve SAMU-XLSR semantic enrichment while considering distant languages for multilingual and language portability experiments.