Abstract:Incomplete multi-view clustering (IMVC) aims to cluster multi-view data that are only partially available. This poses two main challenges: effectively leveraging multi-view information and mitigating the impact of missing views. Prevailing solutions employ cross-view contrastive learning and missing view recovery techniques. However, they either neglect valuable complementary information by focusing only on consensus between views or provide unreliable recovered views due to the absence of supervision. To address these limitations, we propose a novel Unified and Robust Representation Learning for Incomplete Multi-View Clustering (URRL-IMVC). URRL-IMVC directly learns a unified embedding that is robust to view missing conditions by integrating information from multiple views and neighboring samples. Firstly, to overcome the limitations of cross-view contrastive learning, URRL-IMVC incorporates an attention-based auto-encoder framework to fuse multi-view information and generate unified embeddings. Secondly, URRL-IMVC directly enhances the robustness of the unified embedding against view-missing conditions through KNN imputation and data augmentation techniques, eliminating the need for explicit missing view recovery. Finally, incremental improvements are introduced to further enhance the overall performance, such as the Clustering Module and the customization of the Encoder. We extensively evaluate the proposed URRL-IMVC framework on various benchmark datasets, demonstrating its state-of-the-art performance. Furthermore, comprehensive ablation studies are performed to validate the effectiveness of our design.
Abstract:Multi-view Clustering (MVC) has achieved significant progress, with many efforts dedicated to learn knowledge from multiple views. However, most existing methods are either not applicable or require additional steps for incomplete multi-view clustering. Such a limitation results in poor-quality clustering performance and poor missing view adaptation. Besides, noise or outliers might significantly degrade the overall clustering performance, which are not handled well by most existing methods. Moreover, category information is required in most existing methods, which severely affects the clustering performance. In this paper, we propose a novel unified framework for incomplete and complete MVC named self-learning symmetric multi-view probabilistic clustering (SLS-MPC). SLS-MPC proposes a novel symmetric multi-view probability estimation and equivalently transforms multi-view pairwise posterior matching probability into composition of each view's individual distribution, which tolerates data missing and might extend to any number of views. Then, SLS-MPC proposes a novel self-learning probability function without any prior knowledge and hyper-parameters to learn each view's individual distribution from the aspect of consistency in single-view, cross-view and multi-view. Next, graph-context-aware refinement with path propagation and co-neighbor propagation is used to refine pairwise probability, which alleviates the impact of noise and outliers. Finally, SLS-MPC proposes a probabilistic clustering algorithm to adjust clustering assignments by maximizing the joint probability iteratively, in which category information is not required. Extensive experiments on multiple benchmarks for incomplete and complete MVC show that SLS-MPC significantly outperforms previous state-of-the-art methods.
Abstract:Several dual-domain convolutional neural network-based methods show outstanding performance in reducing image compression artifacts. However, they suffer from handling color images because the compression processes for gray-scale and color images are completely different. Moreover, these methods train a specific model for each compression quality and require multiple models to achieve different compression qualities. To address these problems, we proposed an implicit dual-domain convolutional network (IDCN) with the pixel position labeling map and the quantization tables as inputs. Specifically, we proposed an extractor-corrector framework-based dual-domain correction unit (DRU) as the basic component to formulate the IDCN. A dense block was introduced to improve the performance of extractor in DRU. The implicit dual-domain translation allows the IDCN to handle color images with the discrete cosine transform (DCT)-domain priors. A flexible version of IDCN (IDCN-f) was developed to handle a wide range of compression qualities. Experiments for both objective and subjective evaluations on benchmark datasets show that IDCN is superior to the state-of-the-art methods and IDCN-f exhibits excellent abilities to handle a wide range of compression qualities with little performance sacrifice and demonstrates great potential for practical applications.