Abstract:Recently, foundation language models (LMs) have marked significant achievements in the domains of natural language processing (NLP) and computer vision (CV). Unlike traditional neural network models, foundation LMs obtain a great ability for transfer learning by acquiring rich commonsense knowledge through pre-training on extensive unsupervised datasets with a vast number of parameters. However, they still can not emulate human-like continuous learning due to catastrophic forgetting. Consequently, various continual learning (CL)-based methodologies have been developed to refine LMs, enabling them to adapt to new tasks without forgetting previous knowledge. However, a systematic taxonomy of existing approaches and a comparison of their performance are still lacking, which is the gap that our survey aims to fill. We delve into a comprehensive review, summarization, and classification of the existing literature on CL-based approaches applied to foundation language models, such as pre-trained language models (PLMs), large language models (LLMs) and vision-language models (VLMs). We divide these studies into offline CL and online CL, which consist of traditional methods, parameter-efficient-based methods, instruction tuning-based methods and continual pre-training methods. Offline CL encompasses domain-incremental learning, task-incremental learning, and class-incremental learning, while online CL is subdivided into hard task boundary and blurry task boundary settings. Additionally, we outline the typical datasets and metrics employed in CL research and provide a detailed analysis of the challenges and future work for LMs-based continual learning.
Abstract:Aspect-based sentiment analysis (ABSA) is an important subtask of sentiment analysis, which aims to extract the aspects and predict their sentiments. Most existing studies focus on improving the performance of the target domain by fine-tuning domain-specific models (trained on source domains) based on the target domain dataset. Few works propose continual learning tasks for ABSA, which aim to learn the target domain's ability while maintaining the history domains' abilities. In this paper, we propose a Large Language Model-based Continual Learning (\texttt{LLM-CL}) model for ABSA. First, we design a domain knowledge decoupling module to learn a domain-invariant adapter and separate domain-variant adapters dependently with an orthogonal constraint. Then, we introduce a domain knowledge warmup strategy to align the representation between domain-invariant and domain-variant knowledge. In the test phase, we index the corresponding domain-variant knowledge via domain positioning to not require each sample's domain ID. Extensive experiments over 19 datasets indicate that our \texttt{LLM-CL} model obtains new state-of-the-art performance.