Abstract:Long-term fetal heart rate (FHR) monitoring during the antepartum period, increasingly popularized by electronic FHR monitoring, represents a growing approach in FHR monitoring. This kind of continuous monitoring, in contrast to the short-term one, collects an extended period of fetal heart data. This offers a more comprehensive understanding of fetus's conditions. However, the interpretation of long-term antenatal fetal heart monitoring is still in its early stages, lacking corresponding clinical standards. Furthermore, the substantial amount of data generated by continuous monitoring imposes a significant burden on clinical work when analyzed manually. To address above challenges, this study develops an automatic analysis system named LARA (Long-term Antepartum Risk Analysis system) for continuous FHR monitoring, combining deep learning and information fusion methods. LARA's core is a well-established convolutional neural network (CNN) model. It processes long-term FHR data as input and generates a Risk Distribution Map (RDM) and Risk Index (RI) as the analysis results. We evaluate LARA on inner test dataset, the performance metrics are as follows: AUC 0.872, accuracy 0.816, specificity 0.811, sensitivity 0.806, precision 0.271, and F1 score 0.415. In our study, we observe that long-term FHR monitoring data with higher RI is more likely to result in adverse outcomes (p=0.0021). In conclusion, this study introduces LARA, the first automated analysis system for long-term FHR monitoring, initiating the further explorations into its clinical value in the future.
Abstract:The non-line-of-sight imaging technique aims to reconstruct targets from multiply reflected light. For most existing methods, dense points on the relay surface are raster scanned to obtain high-quality reconstructions, which requires a long acquisition time. In this work, we propose a signal-surface collaborative regularization (SSCR) framework that provides noise-robust reconstructions with a minimal number of measurements. Using Bayesian inference, we design joint regularizations of the estimated signal, the 3D voxel-based representation of the objects, and the 2D surface-based description of the targets. To our best knowledge, this is the first work that combines regularizations in mixed dimensions for hidden targets. Experiments on synthetic and experimental datasets illustrated the efficiency and robustness of the proposed method under both confocal and non-confocal settings. We report the reconstruction of the hidden targets with complex geometric structures with only $5 \times 5$ confocal measurements from public datasets, indicating an acceleration of the conventional measurement process by a factor of 10000. Besides, the proposed method enjoys low time and memory complexities with sparse measurements. Our approach has great potential in real-time non-line-of-sight imaging applications such as rescue operations and autonomous driving.
Abstract:Non-line-of-sight (NLOS) imaging aims at reconstructing targets obscured from the direct line of sight. Existing NLOS imaging algorithms require dense measurements at rectangular grid points in a large area of the relay surface, which severely hinders their availability to variable relay scenarios in practical applications such as robotic vision, autonomous driving, rescue operations and remote sensing. In this work, we propose a Bayesian framework for NLOS imaging with no specific requirements on the spatial pattern of illumination and detection points. By introducing virtual confocal signals, we design a confocal complemented signal-object collaborative regularization (CC-SOCR) algorithm for high quality reconstructions. Our approach is capable of reconstructing both albedo and surface normal of the hidden objects with fine details under the most general relay setting. Moreover, with a regular relay surface, coarse rather than dense measurements are enough for our approach such that the acquisition time can be reduced significantly. As demonstrated in multiple experiments, the new framework substantially enhances the applicability of NLOS imaging.