Abstract:Large Language Models (LLMs) inherently use autoregressive decoding, which lacks parallelism in inference and results in significantly slow inference speeds, especially when hardware parallel accelerators and memory bandwidth are not fully utilized. In this work, we propose Amphista, a speculative decoding algorithm that adheres to a non-autoregressive decoding paradigm. Owing to the increased parallelism, our method demonstrates higher efficiency in inference compared to autoregressive methods. Specifically, Amphista models an Auto-embedding Block capable of parallel inference, incorporating bi-directional attention to enable interaction between different drafting heads. Additionally, Amphista implements Staged Adaptation Layers to facilitate the transition of semantic information from the base model's autoregressive inference to the drafting heads' non-autoregressive speculation, thereby achieving paradigm transformation and feature fusion. We conduct a series of experiments on a suite of Vicuna models using MT-Bench and Spec-Bench. For the Vicuna 33B model, Amphista achieves up to 2.75$\times$ and 1.40$\times$ wall-clock acceleration compared to vanilla autoregressive decoding and Medusa, respectively, while preserving lossless generation quality.
Abstract:Instruction tuning has shown promising potential for developing general-purpose AI capabilities by using large-scale pre-trained models and boosts growing research to integrate multimodal information for creative applications. However, existing works still face two main limitations: the high training costs and heavy computing resource dependence of full model fine-tuning, and the lack of semantic information in instructions, which hinders multimodal alignment. Addressing these challenges, this paper proposes a novel approach to utilize Parameter-Efficient Tuning for generAl-purpose vision-Language models, namely PETAL. PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique, which significantly reduces the training costs and reliance on heavy computing resources. Furthermore, PETAL enhances the semantic depth of instructions in two innovative ways: 1) by introducing adaptive instruction mixture-of-experts(MOEs), and 2) by fortifying the score-based linkage between parameter-efficient tuning and mutual information. Our extensive experiments across five multimodal downstream benchmarks reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness. Additionally, our approach demonstrates remarkable advantages in few-shot settings, backed by comprehensive visualization analyses. Our source code is available at: https://github. com/melonking32/PETAL.
Abstract:Driven by the progress of large-scale pre-training, parameter-efficient transfer learning has gained immense popularity across different subfields of Artificial Intelligence. The core is to adapt the model to downstream tasks with only a small set of parameters. Recently, researchers have leveraged such proven techniques in multimodal tasks and achieve promising results. However, two critical issues remain unresolved: how to further reduce the complexity with lightweight design and how to boost alignment between modalities under extremely low parameters. In this paper, we propose A graceful prompt framework for cross-modal transfer (Aurora) to overcome these challenges. Considering the redundancy in existing architectures, we first utilize the mode approximation to generate 0.1M trainable parameters to implement the multimodal prompt tuning, which explores the low intrinsic dimension with only 0.04% parameters of the pre-trained model. Then, for better modality alignment, we propose the Informative Context Enhancement and Gated Query Transformation module under extremely few parameters scenes. A thorough evaluation on six cross-modal benchmarks shows that it not only outperforms the state-of-the-art but even outperforms the full fine-tuning approach. Our code is available at: https://github.com/WillDreamer/Aurora.