Abstract:Explainable AI is increasingly employing argumentation methods to facilitate interactive explanations between AI agents and human users. While existing approaches typically rely on predetermined human user models, there remains a critical gap in dynamically learning and updating these models during interactions. In this paper, we present a framework that enables AI agents to adapt their understanding of human users through argumentation-based dialogues. Our approach, called Persona, draws on prospect theory and integrates a probability weighting function with a Bayesian belief update mechanism that refines a probability distribution over possible human models based on exchanged arguments. Through empirical evaluations with human users in an applied argumentation setting, we demonstrate that Persona effectively captures evolving human beliefs, facilitates personalized interactions, and outperforms state-of-the-art methods.
Abstract:The Distributed Constraint Optimization Problem (DCOP) formulation is a powerful tool to model cooperative multi-agent problems that need to be solved distributively. A core assumption of existing approaches is that DCOP solutions can be easily understood, accepted, and adopted, which may not hold, as evidenced by the large body of literature on Explainable AI. In this paper, we propose the Explainable DCOP (X-DCOP) model, which extends a DCOP to include its solution and a contrastive query for that solution. We formally define some key properties that contrastive explanations must satisfy for them to be considered as valid solutions to X-DCOPs as well as theoretical results on the existence of such valid explanations. To solve X-DCOPs, we propose a distributed framework as well as several optimizations and suboptimal variants to find valid explanations. We also include a human user study that showed that users, not surprisingly, prefer shorter explanations over longer ones. Our empirical evaluations showed that our approach can scale to large problems, and the different variants provide different options for trading off explanation lengths for smaller runtimes. Thus, our model and algorithmic contributions extend the state of the art by reducing the barrier for users to understand DCOP solutions, facilitating their adoption in more real-world applications.
Abstract:A wide variety of resource allocation problems operate under resource constraints that are managed by a central arbitrator, with agents who evaluate and communicate preferences over these resources. We formulate this broad class of problems as Distributed Evaluation, Centralized Allocation (DECA) problems and propose methods to learn fair and efficient policies in centralized resource allocation. Our methods are applied to learning long-term fairness in a novel and general framework for fairness in multi-agent systems. We show three different methods based on Double Deep Q-Learning: (1) A joint weighted optimization of fairness and utility, (2) a split optimization, learning two separate Q-estimators for utility and fairness, and (3) an online policy perturbation to guide existing black-box utility functions toward fair solutions. Our methods outperform existing fair MARL approaches on multiple resource allocation domains, even when evaluated using diverse fairness functions, and allow for flexible online trade-offs between utility and fairness.
Abstract:Gradual semantics have demonstrated great potential in argumentation, in particular for deploying quantitative bipolar argumentation frameworks (QBAFs) in a number of real-world settings, from judgmental forecasting to explainable AI. In this paper, we provide a novel methodology for obtaining gradual semantics for structured argumentation frameworks, where the building blocks of arguments and relations between them are known, unlike in QBAFs, where arguments are abstract entities. Differently from existing approaches, our methodology accommodates incomplete information about arguments' premises. We demonstrate the potential of our approach by introducing two different instantiations of the methodology, leveraging existing gradual semantics for QBAFs in these more complex frameworks. We also define a set of novel properties for gradual semantics in structured argumentation, discuss their suitability over a set of existing properties. Finally, we provide a comprehensive theoretical analysis assessing the instantiations, demonstrating the their advantages over existing gradual semantics for QBAFs and structured argumentation.
Abstract:Criminal courts across the United States handle millions of cases every year, and the scheduling of those cases must accommodate a diverse set of constraints, including the preferences and availability of courts, prosecutors, and defense teams. When criminal court schedules are formed, defendants' scheduling preferences often take the least priority, although defendants may face significant consequences (including arrest or detention) for missed court dates. Additionally, studies indicate that defendants' nonappearances impose costs on the courts and other system stakeholders. To address these issues, courts and commentators have begun to recognize that pretrial outcomes for defendants and for the system would be improved with greater attention to court processes, including \emph{court scheduling practices}. There is thus a need for fair criminal court pretrial scheduling systems that account for defendants' preferences and availability, but the collection of such data poses logistical challenges. Furthermore, optimizing schedules fairly across various parties' preferences is a complex optimization problem, even when such data is available. In an effort to construct such a fair scheduling system under data uncertainty, this paper proposes a joint optimization and learning framework that combines machine learning models trained end-to-end with efficient matching algorithms. This framework aims to produce court scheduling schedules that optimize a principled measure of fairness, balancing the availability and preferences of all parties.
Abstract:We present TRACE-cs, a novel hybrid system that combines symbolic reasoning with large language models (LLMs) to address contrastive queries in scheduling problems. TRACE-cs leverages SAT solving techniques to encode scheduling constraints and generate explanations for user queries, while utilizing an LLM to process the user queries into logical clauses as well as refine the explanations generated by the symbolic solver to natural language sentences. By integrating these components, our approach demonstrates the potential of combining symbolic methods with LLMs to create explainable AI agents with correctness guarantees.
Abstract:To enable effective human-AI collaboration, merely optimizing AI performance while ignoring humans is not sufficient. Recent research has demonstrated that designing AI agents to account for human behavior leads to improved performance in human-AI collaboration. However, a limitation of most existing approaches is their assumption that human behavior is static, irrespective of AI behavior. In reality, humans may adjust their action plans based on their observations of AI behavior. In this paper, we address this limitation by enabling a collaborative AI agent to consider the beliefs of its human partner, i.e., what the human partner thinks the AI agent is doing, and design its action plan to facilitate easier collaboration with its human partner. Specifically, we developed a model of human beliefs that accounts for how humans reason about the behavior of their AI partners. Based on this belief model, we then developed an AI agent that considers both human behavior and human beliefs in devising its strategy for working with humans. Through extensive real-world human-subject experiments, we demonstrated that our belief model more accurately predicts humans' beliefs about AI behavior. Moreover, we showed that our design of AI agents that accounts for human beliefs enhances performance in human-AI collaboration.
Abstract:Explanation generation frameworks aim to make AI systems' decisions transparent and understandable to human users. However, generating explanations in uncertain environments characterized by incomplete information and probabilistic models remains a significant challenge. In this paper, we propose a novel framework for generating probabilistic monolithic explanations and model reconciling explanations. Monolithic explanations provide self-contained reasons for an explanandum without considering the agent receiving the explanation, while model reconciling explanations account for the knowledge of the agent receiving the explanation. For monolithic explanations, our approach integrates uncertainty by utilizing probabilistic logic to increase the probability of the explanandum. For model reconciling explanations, we propose a framework that extends the logic-based variant of the model reconciliation problem to account for probabilistic human models, where the goal is to find explanations that increase the probability of the explanandum while minimizing conflicts between the explanation and the probabilistic human model. We introduce explanatory gain and explanatory power as quantitative metrics to assess the quality of these explanations. Further, we present algorithms that exploit the duality between minimal correction sets and minimal unsatisfiable sets to efficiently compute both types of explanations in probabilistic contexts. Extensive experimental evaluations on various benchmarks demonstrate the effectiveness and scalability of our approach in generating explanations under uncertainty.
Abstract:In belief revision, agents typically modify their beliefs when they receive some new piece of information that is in conflict with them. The guiding principle behind most belief revision frameworks is that of minimalism, which advocates minimal changes to existing beliefs. However, minimalism may not necessarily capture the nuanced ways in which human agents reevaluate and modify their beliefs. In contrast, the explanatory hypothesis indicates that people are inherently driven to seek explanations for inconsistencies, thereby striving for explanatory coherence rather than minimal changes when revising beliefs. Our contribution in this paper is two-fold. Motivated by the explanatory hypothesis, we first present a novel, yet simple belief revision operator that, given a belief base and an explanation for an explanandum, it revises the belief bases in a manner that preserves the explanandum and is not necessarily minimal. We call this operator explanation-based belief revision. Second, we conduct two human-subject studies to empirically validate our approach and investigate belief revision behavior in real-world scenarios. Our findings support the explanatory hypothesis and provide insights into the strategies people employ when resolving inconsistencies.
Abstract:Explainable AI Planning (XAIP) aims to develop AI agents that can effectively explain their decisions and actions to human users, fostering trust and facilitating human-AI collaboration. A key challenge in XAIP is model reconciliation, which seeks to align the mental models of AI agents and humans. While existing approaches often assume a known and deterministic human model, this simplification may not capture the complexities and uncertainties of real-world interactions. In this paper, we propose a novel framework that enables AI agents to learn and update a probabilistic human model through argumentation-based dialogues. Our approach incorporates trust-based and certainty-based update mechanisms, allowing the agent to refine its understanding of the human's mental state based on the human's expressed trust in the agent's arguments and certainty in their own arguments. We employ a probability weighting function inspired by prospect theory to capture the relationship between trust and perceived probability, and use a Bayesian approach to update the agent's probability distribution over possible human models. We conduct a human-subject study to empirically evaluate the effectiveness of our approach in an argumentation scenario, demonstrating its ability to capture the dynamics of human belief formation and adaptation.