Abstract:Current full-reference image quality assessment (FR-IQA) methods often fuse features from reference and distorted images, overlooking that color and luminance distortions occur mainly at low frequencies, whereas edge and texture distortions occur at high frequencies. This work introduces a pioneering training-free FR-IQA method that accurately predicts image quality in alignment with the human visual system (HVS) by leveraging a novel perceptual degradation modelling approach to address this limitation. First, a collaborative feature refinement module employs a carefully designed wavelet transform to extract perceptually relevant features, capturing multiscale perceptual information and mimicking how the HVS analyses visual information at various scales and orientations in the spatial and frequency domains. Second, a Hausdorff distance-based distribution similarity measurement module robustly assesses the discrepancy between the feature distributions of the reference and distorted images, effectively handling outliers and variations while mimicking the ability of HVS to perceive and tolerate certain levels of distortion. The proposed method accurately captures perceptual quality differences without requiring training data or subjective quality scores. Extensive experiments on multiple benchmark datasets demonstrate superior performance compared with existing state-of-the-art approaches, highlighting its ability to correlate strongly with the HVS.\footnote{The code is available at \url{https://anonymous.4open.science/r/CVPR2025-F339}.}
Abstract:In this paper, we propose a physically imaging-guided framework for underwater image quality assessment (UIQA), called PIGUIQA. First, we formulate UIQA as a comprehensive problem that considers the combined effects of direct transmission attenuation and backwards scattering on image perception. On this basis, we incorporate advanced physics-based underwater imaging estimation into our method and define distortion metrics that measure the impact of direct transmission attenuation and backwards scattering on image quality. Second, acknowledging the significant content differences across various regions of an image and the varying perceptual sensitivity to distortions in these regions, we design a local perceptual module on the basis of the neighborhood attention mechanism. This module effectively captures subtle features in images, thereby enhancing the adaptive perception of distortions on the basis of local information. Finally, by employing a global perceptual module to further integrate the original image content with underwater image distortion information, the proposed model can accurately predict the image quality score. Comprehensive experiments demonstrate that PIGUIQA achieves state-of-the-art performance in underwater image quality prediction and exhibits strong generalizability. The code for PIGUIQA is available on https://anonymous.4open.science/r/PIGUIQA-A465/
Abstract:Open-Vocabulary Detection (OVD) aims to detect objects from novel categories beyond the base categories on which the detector is trained. However, existing open-vocabulary detectors trained on known category data tend to assign higher confidence to trained categories and confuse novel categories with background. To resolve this, we propose OV-DQUO, an \textbf{O}pen-\textbf{V}ocabulary DETR with \textbf{D}enoising text \textbf{Q}uery training and open-world \textbf{U}nknown \textbf{O}bjects supervision. Specifically, we introduce a wildcard matching method that enables the detector to learn from pairs of unknown objects recognized by the open-world detector and text embeddings with general semantics, mitigating the confidence bias between base and novel categories. Additionally, we propose a denoising text query training strategy that synthesizes additional noisy query-box pairs from open-world unknown objects to trains the detector through contrastive learning, enhancing its ability to distinguish novel objects from the background. We conducted extensive experiments on the challenging OV-COCO and OV-LVIS benchmarks, achieving new state-of-the-art results of 45.6 AP50 and 39.3 mAP on novel categories respectively, without the need for additional training data. Models and code are released at https://github.com/xiaomoguhz/OV-DQUO