https://github.com/xiaomoguhz/OV-DQUO
Open-Vocabulary Detection (OVD) aims to detect objects from novel categories beyond the base categories on which the detector is trained. However, existing open-vocabulary detectors trained on known category data tend to assign higher confidence to trained categories and confuse novel categories with background. To resolve this, we propose OV-DQUO, an \textbf{O}pen-\textbf{V}ocabulary DETR with \textbf{D}enoising text \textbf{Q}uery training and open-world \textbf{U}nknown \textbf{O}bjects supervision. Specifically, we introduce a wildcard matching method that enables the detector to learn from pairs of unknown objects recognized by the open-world detector and text embeddings with general semantics, mitigating the confidence bias between base and novel categories. Additionally, we propose a denoising text query training strategy that synthesizes additional noisy query-box pairs from open-world unknown objects to trains the detector through contrastive learning, enhancing its ability to distinguish novel objects from the background. We conducted extensive experiments on the challenging OV-COCO and OV-LVIS benchmarks, achieving new state-of-the-art results of 45.6 AP50 and 39.3 mAP on novel categories respectively, without the need for additional training data. Models and code are released at