Abstract:This paper presents the T02 team's system for the Singing Voice Conversion Challenge 2023 (SVCC2023). Our system entails a VITS-based SVC model, incorporating three modules: a feature extractor, a voice converter, and a post-processor. Specifically, the feature extractor provides F0 contours and extracts speaker-independent linguistic content from the input singing voice by leveraging a HuBERT model. The voice converter is employed to recompose the speaker timbre, F0, and linguistic content to generate the waveform of the target speaker. Besides, to further improve the audio quality, a fine-tuned DSPGAN vocoder is introduced to re-synthesise the waveform. Given the limited target speaker data, we utilize a two-stage training strategy to adapt the base model to the target speaker. During model adaptation, several tricks, such as data augmentation and joint training with auxiliary singer data, are involved. Official challenge results show that our system achieves superior performance, especially in the cross-domain task, ranking 1st and 2nd in naturalness and similarity, respectively. Further ablation justifies the effectiveness of our system design.
Abstract:A typical neural speech enhancement (SE) approach mainly handles speech and noise mixtures, which is not optimal for singing voice enhancement scenarios. Music source separation (MSS) models treat vocals and various accompaniment components equally, which may reduce performance compared to the model that only considers vocal enhancement. In this paper, we propose a novel multi-band temporal-frequency neural network (MBTFNet) for singing voice enhancement, which particularly removes background music, noise and even backing vocals from singing recordings. MBTFNet combines inter and intra-band modeling for better processing of full-band signals. Dual-path modeling are introduced to expand the receptive field of the model. We propose an implicit personalized enhancement (IPE) stage based on signal-to-noise ratio (SNR) estimation, which further improves the performance of MBTFNet. Experiments show that our proposed model significantly outperforms several state-of-the-art SE and MSS models.
Abstract:An automatic pitch correction system typically includes several stages, such as pitch extraction, deviation estimation, pitch shift processing, and cross-fade smoothing. However, designing these components with strategies often requires domain expertise and they are likely to fail on corner cases. In this paper, we present KaraTuner, an end-to-end neural architecture that predicts pitch curve and resynthesizes the singing voice directly from the tuned pitch and vocal spectrum extracted from the original recordings. Several vital technical points have been introduced in KaraTuner to ensure pitch accuracy, pitch naturalness, timbre consistency, and sound quality. A feed-forward Transformer is employed in the pitch predictor to capture long-term dependencies in the vocal spectrum and musical note. We also develop a pitch-controllable vocoder base on a novel source-filter block and the Fre-GAN architecture. KaraTuner obtains a higher preference than the rule-based pitch correction approach through A/B tests, and perceptual experiments show that the proposed vocoder achieves significant advantages in timbre consistency and sound quality compared with the parametric WORLD vocoder and phase vocoder.