Abstract:Album sequencing is a critical part of the album production process. Recently, a data-driven approach was proposed that sequences general collections of independent media by extracting the narrative essence of the items in the collections. While this approach implies an album sequencing technique, it is not widely accessible to a less technical audience, requiring advanced knowledge of machine learning techniques to use. To address this, we introduce a new user-friendly web-based tool that allows a less technical audience to upload music tracks, execute this technique in one click, and subsequently presents the result in a clean visualization to the user. To both increase the number of templates available to the user and address shortcomings of previous work, we also introduce a new direct transformer-based album sequencing method. We find that our more direct method outperforms a random baseline but does not reach the same performance as the narrative essence approach. Both methods are included in our web-based user interface, and this -- alongside a full copy of our implementation -- is publicly available at https://github.com/dylanashley/automatic-album-sequencing
Abstract:Recurrent Neural Networks (RNNs) are general-purpose parallel-sequential computers. The program of an RNN is its weight matrix. How to learn useful representations of RNN weights that facilitate RNN analysis as well as downstream tasks? While the mechanistic approach directly looks at some RNN's weights to predict its behavior, the functionalist approach analyzes its overall functionality -- specifically, its input-output mapping. We consider several mechanistic approaches for RNN weights and adapt the permutation equivariant Deep Weight Space layer for RNNs. Our two novel functionalist approaches extract information from RNN weights by 'interrogating' the RNN through probing inputs. We develop a theoretical framework that demonstrates conditions under which the functionalist approach can generate rich representations that help determine RNN behavior. We create and release the first two 'model zoo' datasets for RNN weight representation learning. One consists of generative models of a class of formal languages, and the other one of classifiers of sequentially processed MNIST digits. With the help of an emulation-based self-supervised learning technique we compare and evaluate the different RNN weight encoding techniques on multiple downstream applications. On the most challenging one, namely predicting which exact task the RNN was trained on, functionalist approaches show clear superiority.
Abstract:Current object-centric learning models such as the popular SlotAttention architecture allow for unsupervised visual scene decomposition. Our novel MusicSlots method adapts SlotAttention to the audio domain, to achieve unsupervised music decomposition. Since concepts of opacity and occlusion in vision have no auditory analogues, the softmax normalization of alpha masks in the decoders of visual object-centric models is not well-suited for decomposing audio objects. MusicSlots overcomes this problem. We introduce a spectrogram-based multi-object music dataset tailored to evaluate object-centric learning on western tonal music. MusicSlots achieves good performance on unsupervised note discovery and outperforms several established baselines on supervised note property prediction tasks.
Abstract:Both Minsky's "society of mind" and Schmidhuber's "learning to think" inspire diverse societies of large multimodal neural networks (NNs) that solve problems by interviewing each other in a "mindstorm." Recent implementations of NN-based societies of minds consist of large language models (LLMs) and other NN-based experts communicating through a natural language interface. In doing so, they overcome the limitations of single LLMs, improving multimodal zero-shot reasoning. In these natural language-based societies of mind (NLSOMs), new agents -- all communicating through the same universal symbolic language -- are easily added in a modular fashion. To demonstrate the power of NLSOMs, we assemble and experiment with several of them (having up to 129 members), leveraging mindstorms in them to solve some practical AI tasks: visual question answering, image captioning, text-to-image synthesis, 3D generation, egocentric retrieval, embodied AI, and general language-based task solving. We view this as a starting point towards much larger NLSOMs with billions of agents-some of which may be humans. And with this emergence of great societies of heterogeneous minds, many new research questions have suddenly become paramount to the future of artificial intelligence. What should be the social structure of an NLSOM? What would be the (dis)advantages of having a monarchical rather than a democratic structure? How can principles of NN economies be used to maximize the total reward of a reinforcement learning NLSOM? In this work, we identify, discuss, and try to answer some of these questions.
Abstract:There are two important things in science: (A) Finding answers to given questions, and (B) Coming up with good questions. Our artificial scientists not only learn to answer given questions, but also continually invent new questions, by proposing hypotheses to be verified or falsified through potentially complex and time-consuming experiments, including thought experiments akin to those of mathematicians. While an artificial scientist expands its knowledge, it remains biased towards the simplest, least costly experiments that still have surprising outcomes, until they become boring. We present an empirical analysis of the automatic generation of interesting experiments. In the first setting, we investigate self-invented experiments in a reinforcement-providing environment and show that they lead to effective exploration. In the second setting, pure thought experiments are implemented as the weights of recurrent neural networks generated by a neural experiment generator. Initially interesting thought experiments may become boring over time.
Abstract:The act of telling stories is a fundamental part of what it means to be human. This work introduces the concept of narrative information, which we define to be the overlap in information space between a story and the items that compose the story. Using contrastive learning methods, we show how modern artificial neural networks can be leveraged to distill stories and extract a representation of the narrative information. We then demonstrate how evolutionary algorithms can leverage this to extract a set of narrative templates and how these templates -- in tandem with a novel curve-fitting algorithm we introduce -- can reorder music albums to automatically induce stories in them. In the process of doing so, we give strong statistical evidence that these narrative information templates are present in existing albums. While we experiment only with music albums here, the premises of our work extend to any form of (largely) independent media.
Abstract:Goal-conditioned Reinforcement Learning (RL) aims at learning optimal policies, given goals encoded in special command inputs. Here we study goal-conditioned neural nets (NNs) that learn to generate deep NN policies in form of context-specific weight matrices, similar to Fast Weight Programmers and other methods from the 1990s. Using context commands of the form "generate a policy that achieves a desired expected return," our NN generators combine powerful exploration of parameter space with generalization across commands to iteratively find better and better policies. A form of weight-sharing HyperNetworks and policy embeddings scales our method to generate deep NNs. Experiments show how a single learned policy generator can produce policies that achieve any return seen during training. Finally, we evaluate our algorithm on a set of continuous control tasks where it exhibits competitive performance. Our code is public.
Abstract:Learning to evaluate and improve policies is a core problem of Reinforcement Learning (RL). Traditional RL algorithms learn a value function defined for a single policy. A recently explored competitive alternative is to learn a single value function for many policies. Here we combine the actor-critic architecture of Parameter-Based Value Functions and the policy embedding of Policy Evaluation Networks to learn a single value function for evaluating (and thus helping to improve) any policy represented by a deep neural network (NN). The method yields competitive experimental results. In continuous control problems with infinitely many states, our value function minimizes its prediction error by simultaneously learning a small set of `probing states' and a mapping from actions produced in probing states to the policy's return. The method extracts crucial abstract knowledge about the environment in form of very few states sufficient to fully specify the behavior of many policies. A policy improves solely by changing actions in probing states, following the gradient of the value function's predictions. Surprisingly, it is possible to clone the behavior of a near-optimal policy in Swimmer-v3 and Hopper-v3 environments only by knowing how to act in 3 and 5 such learned states, respectively. Remarkably, our value function trained to evaluate NN policies is also invariant to changes of the policy architecture: we show that it allows for zero-shot learning of linear policies competitive with the best policy seen during training. Our code is public.
Abstract:We look at how machine learning techniques that derive properties of items in a collection of independent media can be used to automatically embed stories into such collections. To do so, we use models that extract the tempo of songs to make a music playlist follow a narrative arc. Our work specifies an open-source tool that uses pre-trained neural network models to extract the global tempo of a set of raw audio files and applies these measures to create a narrative-following playlist. This tool is available at https://github.com/dylanashley/playlist-story-builder/releases/tag/v1.0.0