Abstract:In ad text generation (ATG), desirable ad text is both faithful and informative. That is, it should be faithful to the input document, while at the same time containing important information that appeals to potential customers. The existing evaluation data, CAMERA (arXiv:2309.12030), is suitable for evaluating informativeness, as it consists of reference ad texts created by ad creators. However, these references often include information unfaithful to the input, which is a notable obstacle in promoting ATG research. In this study, we collaborate with in-house ad creators to refine the CAMERA references and develop an alternative ATG evaluation dataset called FaithCAMERA, in which the faithfulness of references is guaranteed. Using FaithCAMERA, we can evaluate how well existing methods for improving faithfulness can generate informative ad text while maintaining faithfulness. Our experiments show that removing training data that contains unfaithful entities improves the faithfulness and informativeness at the entity level, but decreases both at the sentence level. This result suggests that for future ATG research, it is essential not only to scale the training data but also to ensure their faithfulness. Our dataset will be publicly available.
Abstract:Recent models for natural language understanding are inclined to exploit simple patterns in datasets, commonly known as shortcuts. These shortcuts hinge on spurious correlations between labels and latent features existing in the training data. At inference time, shortcut-dependent models are likely to generate erroneous predictions under distribution shifts, particularly when some latent features are no longer correlated with the labels. To avoid this, previous studies have trained models to eliminate the reliance on shortcuts. In this study, we explore a different direction: pessimistically aggregating the predictions of a mixture-of-experts, assuming each expert captures relatively different latent features. The experimental results demonstrate that our post-hoc control over the experts significantly enhances the model's robustness to the distribution shift in shortcuts. Besides, we show that our approach has some practical advantages. We also analyze our model and provide results to support the assumption.
Abstract:Preference optimization is a standard approach to fine-tuning large language models to align with human preferences. The quality, diversity, and quantity of the preference dataset are critical to the effectiveness of preference optimization. However, obtaining a large amount of high-quality and diverse preference annotations is difficult in many applications. This raises the question of how to use the limited annotation budget to create an effective preference dataset. To this end, we propose Annotation-Efficient Preference Optimization (AEPO). Instead of exhaustively annotating preference over all available response texts, AEPO selects a subset of responses that maximizes quality and diversity from the available responses, and then annotates preference over the selected ones. In this way, AEPO focuses the annotation budget on labeling preference over a smaller subset of responses with diversity and of high quality. We evaluate the performance of Direct Preference Optimization (DPO) using AEPO and show that it outperforms models trained using a standard DPO with the same annotation budget. Our code is available at https://github.com/CyberAgentAILab/annotation-efficient-po
Abstract:Non-autoregressive (NAR) language models are known for their low latency in neural machine translation (NMT). However, a performance gap exists between NAR and autoregressive models due to the large decoding space and difficulty in capturing dependency between target words accurately. Compounding this, preparing appropriate training data for NAR models is a non-trivial task, often exacerbating exposure bias. To address these challenges, we apply reinforcement learning (RL) to Levenshtein Transformer, a representative edit-based NAR model, demonstrating that RL with self-generated data can enhance the performance of edit-based NAR models. We explore two RL approaches: stepwise reward maximization and episodic reward maximization. We discuss the respective pros and cons of these two approaches and empirically verify them. Moreover, we experimentally investigate the impact of temperature setting on performance, confirming the importance of proper temperature setting for NAR models' training.
Abstract:Minimum Bayes-risk (MBR) decoding has recently gained renewed attention in text generation. MBR decoding considers texts sampled from a model as pseudo-references and selects the text with the highest similarity to the others. Therefore, sampling is one of the key elements of MBR decoding, and previous studies reported that the performance varies by sampling methods. From a theoretical standpoint, this performance variation is likely tied to how closely the samples approximate the true distribution of references. However, this approximation has not been the subject of in-depth study. In this study, we propose using anomaly detection to measure the degree of approximation. We first closely examine the performance variation and then show that previous hypotheses about samples do not correlate well with the variation, but our introduced anomaly scores do. The results are the first to empirically support the link between the performance and the core assumption of MBR decoding.
Abstract:Low-Rank Adaptation (LoRA) is a widely used Parameter-Efficient Fine-Tuning (PEFT) method that updates an initial weight matrix $W_0$ with a delta matrix $\Delta W$ consisted by two low-rank matrices $A$ and $B$. A previous study suggested that there is correlation between $W_0$ and $\Delta W$. In this study, we aim to delve deeper into relationships between $W_0$ and low-rank matrices $A$ and $B$ to further comprehend the behavior of LoRA. In particular, we analyze a conversion matrix that transform $W_0$ into low-rank matrices, which encapsulates information about the relationships. Our analysis reveals that the conversion matrices are similar across each layer. Inspired by these findings, we hypothesize that a single linear layer, which takes each layer's $W_0$ as input, can yield task-adapted low-rank matrices. To confirm this hypothesis, we devise a method named Conditionally Parameterized LoRA (CondLoRA) that updates initial weight matrices with low-rank matrices derived from a single linear layer. Our empirical results show that CondLoRA maintains a performance on par with LoRA, despite the fact that the trainable parameters of CondLoRA are fewer than those of LoRA. Therefore, we conclude that "a single linear layer yields task-adapted low-rank matrices."
Abstract:One of the most important challenges in text generation systems is to produce outputs that are not only correct but also diverse. Recently, Minimum Bayes-Risk (MBR) decoding has gained prominence for generating sentences of the highest quality among the decoding algorithms. However, existing algorithms proposed for generating diverse outputs are predominantly based on beam search or random sampling, thus their output quality is capped by these underlying methods. In this paper, we investigate an alternative approach -- we develop diversity-promoting decoding algorithms by enforcing diversity objectives to MBR decoding. We propose two variants of MBR, Diverse MBR (DMBR) and $k$-medoids MBR (KMBR), methods to generate a set of sentences with high quality and diversity. We evaluate DMBR and KMBR on a variety of directed text generation tasks using encoder-decoder models and a large language model with prompting. The experimental results show that the proposed method achieves a better trade-off than the diverse beam search and sampling algorithms.
Abstract:Minimum Bayes Risk (MBR) decoding has been shown to be a powerful alternative to beam search decoding in a variety of text generation tasks. MBR decoding selects a hypothesis from a pool of hypotheses that has the least expected risk under a probability model according to a given utility function. Since it is impractical to compute the expected risk exactly over all possible hypotheses, two approximations are commonly used in MBR. First, it integrates over a sampled set of hypotheses rather than over all possible hypotheses. Second, it estimates the probability of each hypothesis using a Monte Carlo estimator. While the first approximation is necessary to make it computationally feasible, the second is not essential since we typically have access to the model probability at inference time. We propose Model-Based MBR (MBMBR), a variant of MBR that uses the model probability itself as the estimate of the probability distribution instead of the Monte Carlo estimate. We show analytically and empirically that the model-based estimate is more promising than the Monte Carlo estimate in text generation tasks. Our experiments show that MBMBR outperforms MBR in several text generation tasks, both with encoder-decoder models and with large language models.
Abstract:Beam search and exhaustive search are two extreme ends of text decoding algorithms with respect to the search depth. Beam search is limited in both search width and depth, whereas exhaustive search is a global search that has no such limitations. Surprisingly, beam search is not only computationally cheaper but also performs better than exhaustive search despite its higher search error. Plenty of research has investigated a range of beam widths, from small to large, and reported that a beam width that is neither too large nor too small is desirable. However, in terms of search depth, only the two extreme ends, beam search and exhaustive search are studied intensively. In this paper, we examine a range of search depths between the two extremes to discover the desirable search depth. To this end, we introduce Lookahead Beam Search (LBS), a multi-step lookahead search that optimizes the objective considering a fixed number of future steps. Beam search and exhaustive search are special cases of LBS where the lookahead depth is set to $0$ and $\infty$, respectively. We empirically evaluate the performance of LBS and find that it outperforms beam search overall on machine translation tasks. The result suggests there is room for improvement in beam search by searching deeper. Inspired by the analysis, we propose Lookbehind Heuristic Beam Search, a computationally feasible search algorithm that heuristically simulates LBS with 1-step lookahead. The empirical results show that the proposed method outperforms vanilla beam search on machine translation and text summarization tasks.
Abstract:Discriminativeness is a desirable feature of image captions: captions should describe the characteristic details of input images. However, recent high-performing captioning models, which are trained with reinforcement learning (RL), tend to generate overly generic captions despite their high performance in various other criteria. First, we investigate the cause of the unexpectedly low discriminativeness and show that RL has a deeply rooted side effect of limiting the output words to high-frequency words. The limited vocabulary is a severe bottleneck for discriminativeness as it is difficult for a model to describe the details beyond its vocabulary. Then, based on this identification of the bottleneck, we drastically recast discriminative image captioning as a much simpler task of encouraging low-frequency word generation. Hinted by long-tail classification and debiasing methods, we propose methods that easily switch off-the-shelf RL models to discriminativeness-aware models with only a single-epoch fine-tuning on the part of the parameters. Extensive experiments demonstrate that our methods significantly enhance the discriminativeness of off-the-shelf RL models and even outperform previous discriminativeness-aware methods with much smaller computational costs. Detailed analysis and human evaluation also verify that our methods boost the discriminativeness without sacrificing the overall quality of captions.