Abstract:We show that content on the web is often translated into many languages, and the low quality of these multi-way translations indicates they were likely created using Machine Translation (MT). Multi-way parallel, machine generated content not only dominates the translations in lower resource languages; it also constitutes a large fraction of the total web content in those languages. We also find evidence of a selection bias in the type of content which is translated into many languages, consistent with low quality English content being translated en masse into many lower resource languages, via MT. Our work raises serious concerns about training models such as multilingual large language models on both monolingual and bilingual data scraped from the web.
Abstract:Neural metrics trained on human evaluations of MT tend to correlate well with human judgments, but their behavior is not fully understood. In this paper, we perform a controlled experiment and compare a baseline metric that has not been trained on human evaluations (Prism) to a trained version of the same metric (Prism+FT). Surprisingly, we find that Prism+FT becomes more robust to machine-translated references, which are a notorious problem in MT evaluation. This suggests that the effects of metric training go beyond the intended effect of improving overall correlation with human judgments.
Abstract:Sockeye 3 is the latest version of the Sockeye toolkit for Neural Machine Translation (NMT). Now based on PyTorch, Sockeye 3 provides faster model implementations and more advanced features with a further streamlined codebase. This enables broader experimentation with faster iteration, efficient training of stronger and faster models, and the flexibility to move new ideas quickly from research to production. When running comparable models, Sockeye 3 is up to 126% faster than other PyTorch implementations on GPUs and up to 292% faster on CPUs. Sockeye 3 is open source software released under the Apache 2.0 license.
Abstract:Vocabulary selection, or lexical shortlisting, is a well-known technique to improve latency of Neural Machine Translation models by constraining the set of allowed output words during inference. The chosen set is typically determined by separately trained alignment model parameters, independent of the source-sentence context at inference time. While vocabulary selection appears competitive with respect to automatic quality metrics in prior work, we show that it can fail to select the right set of output words, particularly for semantically non-compositional linguistic phenomena such as idiomatic expressions, leading to reduced translation quality as perceived by humans. Trading off latency for quality by increasing the size of the allowed set is often not an option in real-world scenarios. We propose a model of vocabulary selection, integrated into the neural translation model, that predicts the set of allowed output words from contextualized encoder representations. This restores translation quality of an unconstrained system, as measured by human evaluations on WMT newstest2020 and idiomatic expressions, at an inference latency competitive with alignment-based selection using aggressive thresholds, thereby removing the dependency on separately trained alignment models.
Abstract:We present Sockeye 2, a modernized and streamlined version of the Sockeye neural machine translation (NMT) toolkit. New features include a simplified code base through the use of MXNet's Gluon API, a focus on state of the art model architectures, distributed mixed precision training, and efficient CPU decoding with 8-bit quantization. These improvements result in faster training and inference, higher automatic metric scores, and a shorter path from research to production.
Abstract:Image captioning is an interdisciplinary research problem that stands between computer vision and natural language processing. The task is to generate a textual description of the content of an image. The typical model used for image captioning is an encoder-decoder deep network, where the encoder captures the essence of an image while the decoder is responsible for generating a sentence describing the image. Attention mechanisms can be used to automatically focus the decoder on parts of the image which are relevant to predict the next word. In this paper, we explore different decoders and attentional models popular in neural machine translation, namely attentional recurrent neural networks, self-attentional transformers, and fully-convolutional networks, which represent the current state of the art of neural machine translation. The image captioning module is available as part of SOCKEYE at https://github.com/awslabs/sockeye which tutorial can be found at https://awslabs.github.io/sockeye/image_captioning.html .
Abstract:We describe Sockeye (version 1.12), an open-source sequence-to-sequence toolkit for Neural Machine Translation (NMT). Sockeye is a production-ready framework for training and applying models as well as an experimental platform for researchers. Written in Python and built on MXNet, the toolkit offers scalable training and inference for the three most prominent encoder-decoder architectures: attentional recurrent neural networks, self-attentional transformers, and fully convolutional networks. Sockeye also supports a wide range of optimizers, normalization and regularization techniques, and inference improvements from current NMT literature. Users can easily run standard training recipes, explore different model settings, and incorporate new ideas. In this paper, we highlight Sockeye's features and benchmark it against other NMT toolkits on two language arcs from the 2017 Conference on Machine Translation (WMT): English-German and Latvian-English. We report competitive BLEU scores across all three architectures, including an overall best score for Sockeye's transformer implementation. To facilitate further comparison, we release all system outputs and training scripts used in our experiments. The Sockeye toolkit is free software released under the Apache 2.0 license.