Abstract:Generative AI (e.g., Generative Adversarial Networks - GANs) has become increasingly popular in recent years. However, Generative AI introduces significant concerns regarding the protection of Intellectual Property Rights (IPR) (resp. model accountability) pertaining to images (resp. toxic images) and models (resp. poisoned models) generated. In this paper, we propose an evaluation framework to provide a comprehensive overview of the current state of the copyright protection measures for GANs, evaluate their performance across a diverse range of GAN architectures, and identify the factors that affect their performance and future research directions. Our findings indicate that the current IPR protection methods for input images, model watermarking, and attribution networks are largely satisfactory for a wide range of GANs. We highlight that further attention must be directed towards protecting training sets, as the current approaches fail to provide robust IPR protection and provenance tracing on training sets.
Abstract:Email phishing has become more prevalent and grows more sophisticated over time. To combat this rise, many machine learning (ML) algorithms for detecting phishing emails have been developed. However, due to the limited email data sets on which these algorithms train, they are not adept at recognising varied attacks and, thus, suffer from concept drift; attackers can introduce small changes in the statistical characteristics of their emails or websites to successfully bypass detection. Over time, a gap develops between the reported accuracy from literature and the algorithm's actual effectiveness in the real world. This realises itself in frequent false positive and false negative classifications. To this end, we propose a multidimensional risk assessment of emails to reduce the feasibility of an attacker adapting their email and avoiding detection. This horizontal approach to email phishing detection profiles an incoming email on its main features. We develop a risk assessment framework that includes three models which analyse an email's (1) threat level, (2) cognitive manipulation, and (3) email type, which we combine to return the final risk assessment score. The Profiler does not require large data sets to train on to be effective and its analysis of varied email features reduces the impact of concept drift. Our Profiler can be used in conjunction with ML approaches, to reduce their misclassifications or as a labeller for large email data sets in the training stage. We evaluate the efficacy of the Profiler against a machine learning ensemble using state-of-the-art ML algorithms on a data set of 9000 legitimate and 900 phishing emails from a large Australian research organisation. Our results indicate that the Profiler's mitigates the impact of concept drift, and delivers 30% less false positive and 25% less false negative email classifications over the ML ensemble's approach.
Abstract:Cyber-phishing attacks recently became more precise, targeted, and tailored by training data to activate only in the presence of specific information or cues. They are adaptable to a much greater extent than traditional phishing detection. Hence, automated detection systems cannot always be 100% accurate, increasing the uncertainty around expected behavior when faced with a potential phishing email. On the other hand, human-centric defence approaches focus extensively on user training but face the difficulty of keeping users up to date with continuously emerging patterns. Therefore, advances in analyzing the content of an email in novel ways along with summarizing the most pertinent content to the recipients of emails is a prospective gateway to furthering how to combat these threats. Addressing this gap, this work leverages transformer-based machine learning to (i) analyze prospective psychological triggers, to (ii) detect possible malicious intent, and (iii) create representative summaries of emails. We then amalgamate this information and present it to the user to allow them to (i) easily decide whether the email is "phishy" and (ii) self-learn advanced malicious patterns.
Abstract:Spear Phishing is a harmful cyber-attack facing business and individuals worldwide. Considerable research has been conducted recently into the use of Machine Learning (ML) techniques to detect spear-phishing emails. ML-based solutions may suffer from zero-day attacks; unseen attacks unaccounted for in the training data. As new attacks emerge, classifiers trained on older data are unable to detect these new varieties of attacks resulting in increasingly inaccurate predictions. Spear Phishing detection also faces scalability challenges due to the growth of the required features which is proportional to the number of the senders within a receiver mailbox. This differs from traditional phishing attacks which typically perform only a binary classification between phishing and benign emails. Therefore, we devise a possible solution to these problems, named RAIDER: Reinforcement AIded Spear Phishing DEtectoR. A reinforcement-learning based feature evaluation system that can automatically find the optimum features for detecting different types of attacks. By leveraging a reward and penalty system, RAIDER allows for autonomous features selection. RAIDER also keeps the number of features to a minimum by selecting only the significant features to represent phishing emails and detect spear-phishing attacks. After extensive evaluation of RAIDER over 11,000 emails and across 3 attack scenarios, our results suggest that using reinforcement learning to automatically identify the significant features could reduce the dimensions of the required features by 55% in comparison to existing ML-based systems. It also improves the accuracy of detecting spoofing attacks by 4% from 90% to 94%. In addition, RAIDER demonstrates reasonable detection accuracy even against a sophisticated attack named Known Sender in which spear-phishing emails greatly resemble those of the impersonated sender.