Abstract:Deepfake detection is critical in mitigating the societal threats posed by manipulated videos. While various algorithms have been developed for this purpose, challenges arise when detectors operate externally, such as on smartphones, when users take a photo of deepfake images and upload on the Internet. One significant challenge in such scenarios is the presence of Moir\'e patterns, which degrade image quality and confound conventional classification algorithms, including deep neural networks (DNNs). The impact of Moir\'e patterns remains largely unexplored for deepfake detectors. In this study, we investigate how camera-captured deepfake videos from digital screens affect detector performance. We conducted experiments using two prominent datasets, CelebDF and FF++, comparing the performance of four state-of-the-art detectors on camera-captured deepfake videos with introduced Moir\'e patterns. Our findings reveal a significant decline in detector accuracy, with none achieving above 68% on average. This underscores the critical need to address Moir\'e pattern challenges in real-world deepfake detection scenarios.
Abstract:This paper introduces A2C, a multi-stage collaborative decision framework designed to enable robust decision-making within human-AI teams. Drawing inspiration from concepts such as rejection learning and learning to defer, A2C incorporates AI systems trained to recognise uncertainty in their decisions and defer to human experts when needed. Moreover, A2C caters to scenarios where even human experts encounter limitations, such as in incident detection and response in cyber Security Operations Centres (SOC). In such scenarios, A2C facilitates collaborative explorations, enabling collective resolution of complex challenges. With support for three distinct decision-making modes in human-AI teams: Automated, Augmented, and Collaborative, A2C offers a flexible platform for developing effective strategies for human-AI collaboration. By harnessing the strengths of both humans and AI, it significantly improves the efficiency and effectiveness of complex decision-making in dynamic and evolving environments. To validate A2C's capabilities, we conducted extensive simulative experiments using benchmark datasets. The results clearly demonstrate that all three modes of decision-making can be effectively supported by A2C. Most notably, collaborative exploration by (simulated) human experts and AI achieves superior performance compared to AI in isolation, underscoring the framework's potential to enhance decision-making within human-AI teams.
Abstract:Deepfakes have rapidly emerged as a profound and serious threat to society, primarily due to their ease of creation and dissemination. This situation has triggered an accelerated development of deepfake detection technologies. However, many existing detectors rely heavily on lab-generated datasets for validation, which may not effectively prepare them for novel, emerging, and real-world deepfake techniques. In this paper, we conduct an extensive and comprehensive review and analysis of the latest state-of-the-art deepfake detectors, evaluating them against several critical criteria. These criteria facilitate the categorization of these detectors into 4 high-level groups and 13 fine-grained sub-groups, all aligned with a unified standard conceptual framework. This classification and framework offer deep and practical insights into the factors that affect detector efficacy. We assess the generalizability of 16 leading detectors across various standard attack scenarios, including black-box, white-box, and gray-box settings. Our systematized analysis and experimentation lay the groundwork for a deeper understanding of deepfake detectors and their generalizability, paving the way for future research focused on creating detectors adept at countering various attack scenarios. Additionally, this work offers insights for developing more proactive defenses against deepfakes.
Abstract:The metaverse has gained significant attention from various industries due to its potential to create a fully immersive and interactive virtual world. However, the integration of deepfakes in the metaverse brings serious security implications, particularly with regard to impersonation. This paper examines the security implications of deepfakes in the metaverse, specifically in the context of gaming, online meetings, and virtual offices. The paper discusses how deepfakes can be used to impersonate in gaming scenarios, how online meetings in the metaverse open the door for impersonation, and how virtual offices in the metaverse lack physical authentication, making it easier for attackers to impersonate someone. The implications of these security concerns are discussed in relation to the confidentiality, integrity, and availability (CIA) triad. The paper further explores related issues such as the darkverse, and digital cloning, as well as regulatory and privacy concerns associated with addressing security threats in the virtual world.
Abstract:Deep neural networks are widely recognized as being vulnerable to adversarial perturbation. To overcome this challenge, developing a robust classifier is crucial. So far, two well-known defenses have been adopted to improve the learning of robust classifiers, namely adversarial training (AT) and Jacobian regularization. However, each approach behaves differently against adversarial perturbations. First, our work carefully analyzes and characterizes these two schools of approaches, both theoretically and empirically, to demonstrate how each approach impacts the robust learning of a classifier. Next, we propose our novel Optimal Transport with Jacobian regularization method, dubbed OTJR, jointly incorporating the input-output Jacobian regularization into the AT by leveraging the optimal transport theory. In particular, we employ the Sliced Wasserstein (SW) distance that can efficiently push the adversarial samples' representations closer to those of clean samples, regardless of the number of classes within the dataset. The SW distance provides the adversarial samples' movement directions, which are much more informative and powerful for the Jacobian regularization. Our extensive experiments demonstrate the effectiveness of our proposed method, which jointly incorporates Jacobian regularization into AT. Furthermore, we demonstrate that our proposed method consistently enhances the model's robustness with CIFAR-100 dataset under various adversarial attack settings, achieving up to 28.49% under AutoAttack.
Abstract:Recent rapid advancements in deepfake technology have allowed the creation of highly realistic fake media, such as video, image, and audio. These materials pose significant challenges to human authentication, such as impersonation, misinformation, or even a threat to national security. To keep pace with these rapid advancements, several deepfake detection algorithms have been proposed, leading to an ongoing arms race between deepfake creators and deepfake detectors. Nevertheless, these detectors are often unreliable and frequently fail to detect deepfakes. This study highlights the challenges they face in detecting deepfakes, including (1) the pre-processing pipeline of artifacts and (2) the fact that generators of new, unseen deepfake samples have not been considered when building the defense models. Our work sheds light on the need for further research and development in this field to create more robust and reliable detectors.
Abstract:Time series anomaly detection is extensively studied in statistics, economics, and computer science. Over the years, numerous methods have been proposed for time series anomaly detection using deep learning-based methods. Many of these methods demonstrate state-of-the-art performance on benchmark datasets, giving the false impression that these systems are robust and deployable in many practical and industrial real-world scenarios. In this paper, we demonstrate that the performance of state-of-the-art anomaly detection methods is degraded substantially by adding only small adversarial perturbations to the sensor data. We use different scoring metrics such as prediction errors, anomaly, and classification scores over several public and private datasets ranging from aerospace applications, server machines, to cyber-physical systems in power plants. Under well-known adversarial attacks from Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) methods, we demonstrate that state-of-the-art deep neural networks (DNNs) and graph neural networks (GNNs) methods, which claim to be robust against anomalies and have been possibly integrated in real-life systems, have their performance drop to as low as 0%. To the best of our understanding, we demonstrate, for the first time, the vulnerabilities of anomaly detection systems against adversarial attacks. The overarching goal of this research is to raise awareness towards the adversarial vulnerabilities of time series anomaly detectors.
Abstract:Significant advancements made in the generation of deepfakes have caused security and privacy issues. Attackers can easily impersonate a person's identity in an image by replacing his face with the target person's face. Moreover, a new domain of cloning human voices using deep-learning technologies is also emerging. Now, an attacker can generate realistic cloned voices of humans using only a few seconds of audio of the target person. With the emerging threat of potential harm deepfakes can cause, researchers have proposed deepfake detection methods. However, they only focus on detecting a single modality, i.e., either video or audio. On the other hand, to develop a good deepfake detector that can cope with the recent advancements in deepfake generation, we need to have a detector that can detect deepfakes of multiple modalities, i.e., videos and audios. To build such a detector, we need a dataset that contains video and respective audio deepfakes. We were able to find a most recent deepfake dataset, Audio-Video Multimodal Deepfake Detection Dataset (FakeAVCeleb), that contains not only deepfake videos but synthesized fake audios as well. We used this multimodal deepfake dataset and performed detailed baseline experiments using state-of-the-art unimodal, ensemble-based, and multimodal detection methods to evaluate it. We conclude through detailed experimentation that unimodals, addressing only a single modality, video or audio, do not perform well compared to ensemble-based methods. Whereas purely multimodal-based baselines provide the worst performance.
Abstract:While significant advancements have been made in the generation of deepfakes using deep learning technologies, its misuse is a well-known issue now. Deepfakes can cause severe security and privacy issues as they can be used to impersonate a person's identity in a video by replacing his/her face with another person's face. Recently, a new problem of generating synthesized human voice of a person is emerging, where AI-based deep learning models can synthesize any person's voice requiring just a few seconds of audio. With the emerging threat of impersonation attacks using deepfake audios and videos, a new generation of deepfake detectors is needed to focus on both video and audio collectively. A large amount of good quality datasets is typically required to capture the real-world scenarios to develop a competent deepfake detector. Existing deepfake datasets either contain deepfake videos or audios, which are racially biased as well. Hence, there is a crucial need for creating a good video as well as an audio deepfake dataset, which can be used to detect audio and video deepfake simultaneously. To fill this gap, we propose a novel Audio-Video Deepfake dataset (FakeAVCeleb) that contains not only deepfake videos but also respective synthesized lip-synced fake audios. We generate this dataset using the current most popular deepfake generation methods. We selected real YouTube videos of celebrities with four racial backgrounds (Caucasian, Black, East Asian, and South Asian) to develop a more realistic multimodal dataset that addresses racial bias and further help develop multimodal deepfake detectors. We performed several experiments using state-of-the-art detection methods to evaluate our deepfake dataset and demonstrate the challenges and usefulness of our multimodal Audio-Video deepfake dataset.
Abstract:Over the last few decades, artificial intelligence research has made tremendous strides, but it still heavily relies on fixed datasets in stationary environments. Continual learning is a growing field of research that examines how AI systems can learn sequentially from a continuous stream of linked data in the same way that biological systems do. Simultaneously, fake media such as deepfakes and synthetic face images have emerged as significant to current multimedia technologies. Recently, numerous method has been proposed which can detect deepfakes with high accuracy. However, they suffer significantly due to their reliance on fixed datasets in limited evaluation settings. Therefore, in this work, we apply continuous learning to neural networks' learning dynamics, emphasizing its potential to increase data efficiency significantly. We propose Continual Representation using Distillation (CoReD) method that employs the concept of Continual Learning (CoL), Representation Learning (ReL), and Knowledge Distillation (KD). We design CoReD to perform sequential domain adaptation tasks on new deepfake and GAN-generated synthetic face datasets, while effectively minimizing the catastrophic forgetting in a teacher-student model setting. Our extensive experimental results demonstrate that our method is efficient at domain adaptation to detect low-quality deepfakes videos and GAN-generated images from several datasets, outperforming the-state-of-art baseline methods.