Abstract:Continual Test-Time Adaptation (CTTA) aims to adapt a pre-trained model to a sequence of target domains during the test phase without accessing the source data. To adapt to unlabeled data from unknown domains, existing methods rely on constructing pseudo-labels for all samples and updating the model through self-training. However, these pseudo-labels often involve noise, leading to insufficient adaptation. To improve the quality of pseudo-labels, we propose a pseudo-label selection method for CTTA, called Pseudo Labeling Filter (PLF). The key idea of PLF is to keep selecting appropriate thresholds for pseudo-labels and identify reliable ones for self-training. Specifically, we present three principles for setting thresholds during continuous domain learning, including initialization, growth and diversity. Based on these principles, we design Self-Adaptive Thresholding to filter pseudo-labels. Additionally, we introduce a Class Prior Alignment (CPA) method to encourage the model to make diverse predictions for unknown domain samples. Through extensive experiments, PLF outperforms current state-of-the-art methods, proving its effectiveness in CTTA.
Abstract:Vehicle-to-everything (V2X) perception is an innovative technology that enhances vehicle perception accuracy, thereby elevating the security and reliability of autonomous systems. However, existing V2X perception methods focus on static scenes from mainly vehicle-based vision, which is constrained by sensor capabilities and communication loads. To adapt V2X perception models to dynamic scenes, we propose to build V2X perception from road-to-vehicle vision and present Adaptive Road-to-Vehicle Perception (AR2VP) method. In AR2VP,we leverage roadside units to offer stable, wide-range sensing capabilities and serve as communication hubs. AR2VP is devised to tackle both intra-scene and inter-scene changes. For the former, we construct a dynamic perception representing module, which efficiently integrates vehicle perceptions, enabling vehicles to capture a more comprehensive range of dynamic factors within the scene.Moreover, we introduce a road-to-vehicle perception compensating module, aimed at preserving the maximized roadside unit perception information in the presence of intra-scene changes.For inter-scene changes, we implement an experience replay mechanism leveraging the roadside unit's storage capacity to retain a subset of historical scene data, maintaining model robustness in response to inter-scene shifts. We conduct perception experiment on 3D object detection and segmentation, and the results show that AR2VP excels in both performance-bandwidth trade-offs and adaptability within dynamic environments.
Abstract:Many methods of semantic image segmentation have borrowed the success of open compound domain adaptation. They minimize the style gap between the images of source and target domains, more easily predicting the accurate pseudo annotations for target domain's images that train segmentation network. The existing methods globally adapt the scene style of the images, whereas the object styles of different categories or instances are adapted improperly. This paper proposes the Object Style Compensation, where we construct the Object-Level Discrepancy Memory with multiple sets of discrepancy features. The discrepancy features in a set capture the style changes of the same category's object instances adapted from target to source domains. We learn the discrepancy features from the images of source and target domains, storing the discrepancy features in memory. With this memory, we select appropriate discrepancy features for compensating the style information of the object instances of various categories, adapting the object styles to a unified style of source domain. Our method enables a more accurate computation of the pseudo annotations for target domain's images, thus yielding state-of-the-art results on different datasets.