Abstract:This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark.
Abstract:Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency when performing inference with deep learning workloads. Error backpropagation is presently regarded as the most effective method for training SNNs, but in a twist of irony, when training on modern graphics processing units (GPUs) this becomes more expensive than non-spiking networks. The emergence of Graphcore's Intelligence Processing Units (IPUs) balances the parallelized nature of deep learning workloads with the sequential, reusable, and sparsified nature of operations prevalent when training SNNs. IPUs adopt multi-instruction multi-data (MIMD) parallelism by running individual processing threads on smaller data blocks, which is a natural fit for the sequential, non-vectorized steps required to solve spiking neuron dynamical state equations. We present an IPU-optimized release of our custom SNN Python package, snnTorch, which exploits fine-grained parallelism by utilizing low-level, pre-compiled custom operations to accelerate irregular and sparse data access patterns that are characteristic of training SNN workloads. We provide a rigorous performance assessment across a suite of commonly used spiking neuron models, and propose methods to further reduce training run-time via half-precision training. By amortizing the cost of sequential processing into vectorizable population codes, we ultimately demonstrate the potential for integrating domain-specific accelerators with the next generation of neural networks.