Abstract:Pretrained models have become a commodity and offer strong results on a broad range of tasks. In this work, we focus on classification and seek to learn a unique encoder able to take from several complementary pretrained models. We aim at even stronger generalization across a variety of classification tasks. We propose to learn such an encoder via multi-teacher distillation. We first thoroughly analyse standard distillation when driven by multiple strong teachers with complementary strengths. Guided by this analysis, we gradually propose improvements to the basic distillation setup. Among those, we enrich the architecture of the encoder with a ladder of expendable projectors, which increases the impact of intermediate features during distillation, and we introduce teacher dropping, a regularization mechanism that better balances the teachers' influence. Our final distillation strategy leads to student models of the same capacity as any of the teachers, while retaining or improving upon the performance of the best teacher for each task. Project page and code: https://europe.naverlabs.com/unic
Abstract:In this paper, we address the challenging problem of long-term 3D human motion generation. Specifically, we aim to generate a long sequence of smoothly connected actions from a stream of multiple sentences (i.e., paragraph). Previous long-term motion generating approaches were mostly based on recurrent methods, using previously generated motion chunks as input for the next step. However, this approach has two drawbacks: 1) it relies on sequential datasets, which are expensive; 2) these methods yield unrealistic gaps between motions generated at each step. To address these issues, we introduce simple yet effective T2LM, a continuous long-term generation framework that can be trained without sequential data. T2LM comprises two components: a 1D-convolutional VQVAE, trained to compress motion to sequences of latent vectors, and a Transformer-based Text Encoder that predicts a latent sequence given an input text. At inference, a sequence of sentences is translated into a continuous stream of latent vectors. This is then decoded into a motion by the VQVAE decoder; the use of 1D convolutions with a local temporal receptive field avoids temporal inconsistencies between training and generated sequences. This simple constraint on the VQ-VAE allows it to be trained with short sequences only and produces smoother transitions. T2LM outperforms prior long-term generation models while overcoming the constraint of requiring sequential data; it is also competitive with SOTA single-action generation models.
Abstract:We present a novel method to generate human motion to populate 3D indoor scenes. It can be controlled with various combinations of conditioning signals such as a path in a scene, target poses, past motions, and scenes represented as 3D point clouds. State-of-the-art methods are either models specialized to one single setting, require vast amounts of high-quality and diverse training data, or are unconditional models that do not integrate scene or other contextual information. As a consequence, they have limited applicability and rely on costly training data. To address these limitations, we propose a new method ,dubbed Purposer, based on neural discrete representation learning. Our model is capable of exploiting, in a flexible manner, different types of information already present in open access large-scale datasets such as AMASS. First, we encode unconditional human motion into a discrete latent space. Second, an autoregressive generative model, conditioned with key contextual information, either with prompting or additive tokens, and trained for next-step prediction in this space, synthesizes sequences of latent indices. We further design a novel conditioning block to handle future conditioning information in such a causal model by using a network with two branches to compute separate stacks of features. In this manner, Purposer can generate realistic motion sequences in diverse test scenes. Through exhaustive evaluation, we demonstrate that our multi-contextual solution outperforms existing specialized approaches for specific contextual information, both in terms of quality and diversity. Our model is trained with short sequences, but a byproduct of being able to use various conditioning signals is that at test time different combinations can be used to chain short sequences together and generate long motions within a context scene.
Abstract:We present Multi-HMR, a strong single-shot model for multi-person 3D human mesh recovery from a single RGB image. Predictions encompass the whole body, i.e, including hands and facial expressions, using the SMPL-X parametric model and spatial location in the camera coordinate system. Our model detects people by predicting coarse 2D heatmaps of person centers, using features produced by a standard Vision Transformer (ViT) backbone. It then predicts their whole-body pose, shape and spatial location using a new cross-attention module called the Human Prediction Head (HPH), with one query per detected center token, attending to the entire set of features. As direct prediction of SMPL-X parameters yields suboptimal results, we introduce CUFFS; the Close-Up Frames of Full-Body Subjects dataset, containing humans close to the camera with diverse hand poses. We show that incorporating this dataset into training further enhances predictions, particularly for hands, enabling us to achieve state-of-the-art performance. Multi-HMR also optionally accounts for camera intrinsics, if available, by encoding camera ray directions for each image token. This simple design achieves strong performance on whole-body and body-only benchmarks simultaneously. We train models with various backbone sizes and input resolutions. In particular, using a ViT-S backbone and $448\times448$ input images already yields a fast and competitive model with respect to state-of-the-art methods, while considering larger models and higher resolutions further improve performance.
Abstract:Human perception and understanding is a major domain of computer vision which, like many other vision subdomains recently, stands to gain from the use of large models pre-trained on large datasets. We hypothesize that the most common pre-training strategy of relying on general purpose, object-centric image datasets such as ImageNet, is limited by an important domain shift. On the other hand, collecting domain specific ground truth such as 2D or 3D labels does not scale well. Therefore, we propose a pre-training approach based on self-supervised learning that works on human-centric data using only images. Our method uses pairs of images of humans: the first is partially masked and the model is trained to reconstruct the masked parts given the visible ones and a second image. It relies on both stereoscopic (cross-view) pairs, and temporal (cross-pose) pairs taken from videos, in order to learn priors about 3D as well as human motion. We pre-train a model for body-centric tasks and one for hand-centric tasks. With a generic transformer architecture, these models outperform existing self-supervised pre-training methods on a wide set of human-centric downstream tasks, and obtain state-of-the-art performance for instance when fine-tuning for model-based and model-free human mesh recovery.
Abstract:Transformers have become the standard in state-of-the-art vision architectures, achieving impressive performance on both image-level and dense pixelwise tasks. However, training vision transformers for high-resolution pixelwise tasks has a prohibitive cost. Typical solutions boil down to hierarchical architectures, fast and approximate attention, or training on low-resolution crops. This latter solution does not constrain architectural choices, but it leads to a clear performance drop when testing at resolutions significantly higher than that used for training, thus requiring ad-hoc and slow post-processing schemes. In this paper, we propose a novel strategy for efficient training and inference of high-resolution vision transformers: the key principle is to mask out most of the high-resolution inputs during training, keeping only N random windows. This allows the model to learn local interactions between tokens inside each window, and global interactions between tokens from different windows. As a result, the model can directly process the high-resolution input at test time without any special trick. We show that this strategy is effective when using relative positional embedding such as rotary embeddings. It is 4 times faster to train than a full-resolution network, and it is straightforward to use at test time compared to existing approaches. We apply this strategy to the dense monocular task of semantic segmentation, and find that a simple setting with 2 windows performs best, hence the name of our method: Win-Win. To demonstrate the generality of our contribution, we further extend it to the binocular task of optical flow, reaching state-of-the-art performance on the Spring benchmark that contains Full-HD images with an inference time an order of magnitude faster than the best competitor.
Abstract:Despite impressive performance for high-level downstream tasks, self-supervised pre-training methods have not yet fully delivered on dense geometric vision tasks such as stereo matching. The application of self-supervised learning concepts, such as instance discrimination or masked image modeling, to geometric tasks is an active area of research. In this work we build on the recent cross-view completion framework: this variation of masked image modeling leverages a second view from the same scene, which is well suited for binocular downstream tasks. However, the applicability of this concept has so far been limited in at least two ways: (a) by the difficulty of collecting real-world image pairs - in practice only synthetic data had been used - and (b) by the lack of generalization of vanilla transformers to dense downstream tasks for which relative position is more meaningful than absolute position. We explore three avenues of improvement: first, we introduce a method to collect suitable real-world image pairs at large scale. Second, we experiment with relative positional embeddings and demonstrate that they enable vision transformers to perform substantially better. Third, we scale up vision transformer based cross-completion architectures, which is made possible by the use of large amounts of data. With these improvements, we show for the first time that state-of-the-art results on deep stereo matching can be reached without using any standard task-specific techniques like correlation volume, iterative estimation or multi-scale reasoning.
Abstract:We address the problem of action-conditioned generation of human motion sequences. Existing work falls into two categories: forecast models conditioned on observed past motions, or generative models conditioned on action labels and duration only. In contrast, we generate motion conditioned on observations of arbitrary length, including none. To solve this generalized problem, we propose PoseGPT, an auto-regressive transformer-based approach which internally compresses human motion into quantized latent sequences. An auto-encoder first maps human motion to latent index sequences in a discrete space, and vice-versa. Inspired by the Generative Pretrained Transformer (GPT), we propose to train a GPT-like model for next-index prediction in that space; this allows PoseGPT to output distributions on possible futures, with or without conditioning on past motion. The discrete and compressed nature of the latent space allows the GPT-like model to focus on long-range signal, as it removes low-level redundancy in the input signal. Predicting discrete indices also alleviates the common pitfall of predicting averaged poses, a typical failure case when regressing continuous values, as the average of discrete targets is not a target itself. Our experimental results show that our proposed approach achieves state-of-the-art results on HumanAct12, a standard but small scale dataset, as well as on BABEL, a recent large scale MoCap dataset, and on GRAB, a human-object interactions dataset.
Abstract:Masked Image Modeling (MIM) has recently been established as a potent pre-training paradigm. A pretext task is constructed by masking patches in an input image, and this masked content is then predicted by a neural network using visible patches as sole input. This pre-training leads to state-of-the-art performance when finetuned for high-level semantic tasks, e.g. image classification and object detection. In this paper we instead seek to learn representations that transfer well to a wide variety of 3D vision and lower-level geometric downstream tasks, such as depth prediction or optical flow estimation. Inspired by MIM, we propose an unsupervised representation learning task trained from pairs of images showing the same scene from different viewpoints. More precisely, we propose the pretext task of cross-view completion where the first input image is partially masked, and this masked content has to be reconstructed from the visible content and the second image. In single-view MIM, the masked content often cannot be inferred precisely from the visible portion only, so the model learns to act as a prior influenced by high-level semantics. In contrast, this ambiguity can be resolved with cross-view completion from the second unmasked image, on the condition that the model is able to understand the spatial relationship between the two images. Our experiments show that our pretext task leads to significantly improved performance for monocular 3D vision downstream tasks such as depth estimation. In addition, our model can be directly applied to binocular downstream tasks like optical flow or relative camera pose estimation, for which we obtain competitive results without bells and whistles, i.e., using a generic architecture without any task-specific design.
Abstract:Methods that combine local and global features have recently shown excellent performance on multiple challenging deep image retrieval benchmarks, but their use of local features raises at least two issues. First, these local features simply boil down to the localized map activations of a neural network, and hence can be extremely redundant. Second, they are typically trained with a global loss that only acts on top of an aggregation of local features; by contrast, testing is based on local feature matching, which creates a discrepancy between training and testing. In this paper, we propose a novel architecture for deep image retrieval, based solely on mid-level features that we call Super-features. These Super-features are constructed by an iterative attention module and constitute an ordered set in which each element focuses on a localized and discriminant image pattern. For training, they require only image labels. A contrastive loss operates directly at the level of Super-features and focuses on those that match across images. A second complementary loss encourages diversity. Experiments on common landmark retrieval benchmarks validate that Super-features substantially outperform state-of-the-art methods when using the same number of features, and only require a significantly smaller memory footprint to match their performance. Code and models are available at: https://github.com/naver/FIRe.