Abstract:Convolutional Neural Networks (CNNs) excel in local spatial pattern recognition. For many vision tasks, such as object recognition and segmentation, salient information is also present outside CNN's kernel boundaries. However, CNNs struggle in capturing such relevant information due to their confined receptive fields. Self-attention can improve a model's access to global information but increases computational overhead. We present a fast and simple fully convolutional method called DAS that helps focus attention on relevant information. It uses deformable convolutions for the location of pertinent image regions and separable convolutions for efficiency. DAS plugs into existing CNNs and propagates relevant information using a gating mechanism. Compared to the O(n^2) computational complexity of transformer-style attention, DAS is O(n). Our claim is that DAS's ability to pay increased attention to relevant features results in performance improvements when added to popular CNNs for Image Classification and Object Detection. For example, DAS yields an improvement on Stanford Dogs (4.47%), ImageNet (1.91%), and COCO AP (3.3%) with base ResNet50 backbone. This outperforms other CNN attention mechanisms while using similar or less FLOPs. Our code will be publicly available.
Abstract:Direct mesh editing and deformation are key components in the geometric modeling and animation pipeline. Direct mesh editing methods are typically framed as optimization problems combining user-specified vertex constraints with a regularizer that determines the position of the rest of the vertices. The choice of the regularizer is key to the realism and authenticity of the final result. Physics and geometry-based regularizers are not aware of the global context and semantics of the object, and the more recent deep learning priors are limited to a specific class of 3D object deformations. In this work, our main contribution is a local mesh editing method called DragD3D for global context-aware realistic deformation through direct manipulation of a few vertices. DragD3D is not restricted to any class of objects. It achieves this by combining the classic geometric ARAP (as rigid as possible) regularizer with 2D priors obtained from a large-scale diffusion model. Specifically, we render the objects from multiple viewpoints through a differentiable renderer and use the recently introduced DDS loss which scores the faithfulness of the rendered image to one from a diffusion model. DragD3D combines the approximate gradients of the DDS with gradients from the ARAP loss to modify the mesh vertices via neural Jacobian field, while also satisfying vertex constraints. We show that our deformations are realistic and aware of the global context of the objects, and provide better results than just using geometric regularizers.
Abstract:Recently, a number of iterative learning methods have been introduced to improve generalization. These typically rely on training for longer periods of time in exchange for improved generalization. LLF (later-layer-forgetting) is a state-of-the-art method in this category. It strengthens learning in early layers by periodically re-initializing the last few layers of the network. Our principal innovation in this work is to use Simulated annealing in EArly Layers (SEAL) of the network in place of re-initialization of later layers. Essentially, later layers go through the normal gradient descent process, while the early layers go through short stints of gradient ascent followed by gradient descent. Extensive experiments on the popular Tiny-ImageNet dataset benchmark and a series of transfer learning and few-shot learning tasks show that we outperform LLF by a significant margin. We further show that, compared to normal training, LLF features, although improving on the target task, degrade the transfer learning performance across all datasets we explored. In comparison, our method outperforms LLF across the same target datasets by a large margin. We also show that the prediction depth of our method is significantly lower than that of LLF and normal training, indicating on average better prediction performance.
Abstract:In Continual learning (CL) balancing effective adaptation while combating catastrophic forgetting is a central challenge. Many of the recent best-performing methods utilize various forms of prior task data, e.g. a replay buffer, to tackle the catastrophic forgetting problem. Having access to previous task data can be restrictive in many real-world scenarios, for example when task data is sensitive or proprietary. To overcome the necessity of using previous tasks data, in this work, we start with strong representation learning methods that have been shown to be less prone to forgetting. We propose a holistic approach to jointly learn the representation and class prototypes while maintaining the relevance of old class prototypes and their embedded similarities. Specifically, samples are mapped to an embedding space where the representations are learned using a supervised contrastive loss. Class prototypes are evolved continually in the same latent space, enabling learning and prediction at any point. To continually adapt the prototypes without keeping any prior task data, we propose a novel distillation loss that constrains class prototypes to maintain relative similarities as compared to new task data. This method yields state-of-the-art performance in the task-incremental setting where we are able to outperform other methods that both use no data as well as approaches relying on large amounts of data. Our method is also shown to provide strong performance in the class-incremental setting without using any stored data points.
Abstract:Continual Learning research typically focuses on tackling the phenomenon of catastrophic forgetting in neural networks. Catastrophic forgetting is associated with an abrupt loss of knowledge previously learned by a model when the task, or more broadly the data distribution, being trained on changes. In supervised learning problems this forgetting, resulting from a change in the model's representation, is typically measured or observed by evaluating the decrease in old task performance. However, a model's representation can change without losing knowledge about prior tasks. In this work we consider the concept of representation forgetting, observed by using the difference in performance of an optimal linear classifier before and after a new task is introduced. Using this tool we revisit a number of standard continual learning benchmarks and observe that, through this lens, model representations trained without any explicit control for forgetting often experience small representation forgetting and can sometimes be comparable to methods which explicitly control for forgetting, especially in longer task sequences. We also show that representation forgetting can lead to new insights on the effect of model capacity and loss function used in continual learning. Based on our results, we show that a simple yet competitive approach is to learn representations continually with standard supervised contrastive learning while constructing prototypes of class samples when queried on old samples.
Abstract:Recent work studies the supervised online continual learning setting where a learner receives a stream of data whose class distribution changes over time. Distinct from other continual learning settings the learner is presented new samples only once and must distinguish between all seen classes. A number of successful methods in this setting focus on storing and replaying a subset of samples alongside incoming data in a computationally efficient manner. One recent proposal ER-AML achieved strong performance in this setting by applying an asymmetric loss based on contrastive learning to the incoming data and replayed data. However, a key ingredient of the proposed method is avoiding contrasts between incoming data and stored data, which makes it impractical for the setting where only one new class is introduced in each phase of the stream. In this work we adapt a recently proposed approach (\textit{BYOL}) from self-supervised learning to the supervised learning setting, unlocking the constraint on contrasts. We then show that supplementing this with additional regularization on class prototypes yields a new method that achieves strong performance in the one-class incremental learning setting and is competitive with the top performing methods in the multi-class incremental setting.
Abstract:Visualization requirements in Forensic Lucid have to do with different levels of case knowledge abstraction, representation, aggregation, as well as the operational aspects as the final long-term goal of this proposal. It encompasses anything from the finer detailed representation of hierarchical contexts to Forensic Lucid programs, to the documented evidence and its management, its linkage to programs, to evaluation, and to the management of GIPSY software networks. This includes an ability to arbitrarily switch between those views combined with usable multimodal interaction. The purpose is to determine how the findings can be applied to Forensic Lucid and investigation case management. It is also natural to want a convenient and usable evidence visualization, its semantic linkage and the reasoning machinery for it. Thus, we propose a scalable management, visualization, and evaluation of digital evidence using the modified interactive 3D documentary system - Illimitable Space System - (ISS) to represent, semantically link, and provide a usable interface to digital investigators that is navigable via different multimodal interaction techniques using Computer Vision techniques including gestures, as well as eye-gaze and audio.
Abstract:Object classification is one of the many holy grails in computer vision and as such has resulted in a very large number of algorithms being proposed already. Specifically in recent years there has been considerable progress in this area primarily due to the increased efficiency and accessibility of deep learning techniques. In fact, for single-label object classification [i.e. only one object present in the image] the state-of-the-art techniques employ deep neural networks and are reporting very close to human-like performance. There are specialized applications in which single-label object-level classification will not suffice; for example in cases where the image contains multiple intertwined objects of different labels. In this paper, we address the complex problem of multi-label pixelwise classification. We present our distinct solution based on a convolutional neural network (CNN) for performing multi-label pixelwise classification and its application to large-scale urban reconstruction. A supervised learning approach is followed for training a 13-layer CNN using both LiDAR and satellite images. An empirical study has been conducted to determine the hyperparameters which result in the optimal performance of the CNN. Scale invariance is introduced by training the network on five different scales of the input and labeled data. This results in six pixelwise classifications for each different scale. An SVM is then trained to map the six pixelwise classifications into a single-label. Lastly, we refine boundary pixel labels using graph-cuts for maximum a-posteriori (MAP) estimation with Markov Random Field (MRF) priors. The resulting pixelwise classification is then used to accurately extract and reconstruct the buildings in large-scale urban areas. The proposed approach has been extensively tested and the results are reported.
Abstract:Action recognition, motion classification, gait analysis and synthesis are fundamental problems in a number of fields such as computer graphics, bio-mechanics and human computer interaction that generate a large body of research. This type of data is complex because it is inherently multidimensional and has multiple modalities such as video, motion capture data, accelerometer data, etc. While some of this data, such as monocular video are easy to acquire, others are much more difficult and expensive such as motion capture data or multi-view video. This creates a large barrier of entry in the research community for data driven research. We have embarked on creating a new large repository of motion and action data (CAMREP) consisting of several motion and action databases. What makes this database unique is that we use a variety of modalities, enabling multi-modal analysis. Presently, the size of datasets varies with some having a large number of subjects while others having smaller numbers. We have also acquired long capture sequences in a number of cases, making some datasets rather large.