Abstract:ChartQA presents significant challenges due to the complex distribution of chart elements and the implicit patterns embedded within the underlying data. In this chapter, we have developed a joint multimodal scene graph for charts, explicitly representing the relationships between chart elements and their associated patterns. Our proposed multimodal scene graph consists of two components: a visual graph and a textual graph, each designed to capture the structural and semantic information within the chart. To unify representations across these different modalities, we introduce a multimodal graph contrastive learning approach that learns unified representations by maximizing similarity between nodes representing the same object across multimodal graphs. The learned graph representations can be seamlessly incorporated into a transformer decoder as a soft prompt. Additionally, given the growing need for Multimodal Large Language Models (MLLMs) in zero-shot scenarios, we have designed Chain-of-Thought (CoT) prompts for MLLMs to reduce hallucinations. We tested both methods on public benchmarks such as ChartQA, OpenCQA, and ChartX, demonstrating improved performance and validating the effectiveness of our proposed methods.
Abstract:Existing Multimodal Large Language Models (MLLMs) and Visual Language Pretrained Models (VLPMs) have shown remarkable performances in the general Visual Question Answering (VQA). However, these models struggle with VQA questions that require external commonsense knowledge due to the challenges in generating high-quality prompts and the high computational costs of fine-tuning. In this work, we propose a novel graph-based multimodal commonsense knowledge distillation framework that constructs a unified relational graph over commonsense knowledge, visual objects and questions through a Graph Convolutional Network (GCN) following a teacher-student environment. This proposed framework is flexible with any type of teacher and student models without further fine-tuning, and has achieved competitive performances on the ScienceQA dataset.
Abstract:Discontinuous Named Entity Recognition (DNER) presents a challenging problem where entities may be scattered across multiple non-adjacent tokens, making traditional sequence labelling approaches inadequate. Existing methods predominantly rely on custom tagging schemes to handle these discontinuous entities, resulting in models tightly coupled to specific tagging strategies and lacking generalisability across diverse datasets. To address these challenges, we propose TriG-NER, a novel Triplet-Grid Framework that introduces a generalisable approach to learning robust token-level representations for discontinuous entity extraction. Our framework applies triplet loss at the token level, where similarity is defined by word pairs existing within the same entity, effectively pulling together similar and pushing apart dissimilar ones. This approach enhances entity boundary detection and reduces the dependency on specific tagging schemes by focusing on word-pair relationships within a flexible grid structure. We evaluate TriG-NER on three benchmark DNER datasets and demonstrate significant improvements over existing grid-based architectures. These results underscore our framework's effectiveness in capturing complex entity structures and its adaptability to various tagging schemes, setting a new benchmark for discontinuous entity extraction.
Abstract:This tutorial explores recent advancements in multimodal pretrained and large models, capable of integrating and processing diverse data forms such as text, images, audio, and video. Participants will gain an understanding of the foundational concepts of multimodality, the evolution of multimodal research, and the key technical challenges addressed by these models. We will cover the latest multimodal datasets and pretrained models, including those beyond vision and language. Additionally, the tutorial will delve into the intricacies of multimodal large models and instruction tuning strategies to optimise performance for specific tasks. Hands-on laboratories will offer practical experience with state-of-the-art multimodal models, demonstrating real-world applications like visual storytelling and visual question answering. This tutorial aims to equip researchers, practitioners, and newcomers with the knowledge and skills to leverage multimodal AI. ACM Multimedia 2024 is the ideal venue for this tutorial, aligning perfectly with our goal of understanding multimodal pretrained and large language models, and their tuning mechanisms.
Abstract:Visually-Rich Documents (VRDs), encompassing elements like charts, tables, and references, convey complex information across various fields. However, extracting information from these rich documents is labor-intensive, especially given their inconsistent formats and domain-specific requirements. While pretrained models for VRD Understanding have progressed, their reliance on large, annotated datasets limits scalability. This paper introduces the Domain Adaptive Visually-rich Document Understanding (DAViD) framework, which utilises machine-generated synthetic data for domain adaptation. DAViD integrates fine-grained and coarse-grained document representation learning and employs synthetic annotations to reduce the need for costly manual labelling. By leveraging pretrained models and synthetic data, DAViD achieves competitive performance with minimal annotated datasets. Extensive experiments validate DAViD's effectiveness, demonstrating its ability to efficiently adapt to domain-specific VRDU tasks.
Abstract:Although Large Language Models(LLMs) can generate coherent and contextually relevant text, they often struggle to recognise the intent behind the human user's query. Natural Language Understanding (NLU) models, however, interpret the purpose and key information of user's input to enable responsive interactions. Existing NLU models generally map individual utterances to a dual-level semantic frame, involving sentence-level intent and word-level slot labels. However, real-life conversations primarily consist of multi-turn conversations, involving the interpretation of complex and extended dialogues. Researchers encounter challenges addressing all facets of multi-turn dialogue conversations using a unified single NLU model. This paper introduces a novel approach, MIDAS, leveraging a multi-level intent, domain, and slot knowledge distillation for multi-turn NLU. To achieve this, we construct distinct teachers for varying levels of conversation knowledge, namely, sentence-level intent detection, word-level slot filling, and conversation-level domain classification. These teachers are then fine-tuned to acquire specific knowledge of their designated levels. A multi-teacher loss is proposed to facilitate the combination of these multi-level teachers, guiding a student model in multi-turn dialogue tasks. The experimental results demonstrate the efficacy of our model in improving the overall multi-turn conversation understanding, showcasing the potential for advancements in NLU models through the incorporation of multi-level dialogue knowledge distillation techniques.
Abstract:Automatic Chart Question Answering (ChartQA) is challenging due to the complex distribution of chart elements with patterns of the underlying data not explicitly displayed in charts. To address this challenge, we design a joint multimodal scene graph for charts to explicitly represent the relationships between chart elements and their patterns. Our proposed multimodal scene graph includes a visual graph and a textual graph to jointly capture the structural and semantical knowledge from the chart. This graph module can be easily integrated with different vision transformers as inductive bias. Our experiments demonstrate that incorporating the proposed graph module enhances the understanding of charts' elements' structure and semantics, thereby improving performance on publicly available benchmarks, ChartQA and OpenCQA.
Abstract:Visually Rich Documents (VRDs) are essential in academia, finance, medical fields, and marketing due to their multimodal information content. Traditional methods for extracting information from VRDs depend on expert knowledge and manual labor, making them costly and inefficient. The advent of deep learning has revolutionized this process, introducing models that leverage multimodal information vision, text, and layout along with pretraining tasks to develop comprehensive document representations. These models have achieved state-of-the-art performance across various downstream tasks, significantly enhancing the efficiency and accuracy of information extraction from VRDs. In response to the growing demands and rapid developments in Visually Rich Document Understanding (VRDU), this paper provides a comprehensive review of deep learning-based VRDU frameworks. We systematically survey and analyze existing methods and benchmark datasets, categorizing them based on adopted strategies and downstream tasks. Furthermore, we compare different techniques used in VRDU models, focusing on feature representation and fusion, model architecture, and pretraining methods, while highlighting their strengths, limitations, and appropriate scenarios. Finally, we identify emerging trends and challenges in VRDU, offering insights into future research directions and practical applications. This survey aims to provide a thorough understanding of VRDU advancements, benefiting both academic and industrial sectors.
Abstract:The significance of mental health classification is paramount in contemporary society, where digital platforms serve as crucial sources for monitoring individuals' well-being. However, existing social media mental health datasets primarily consist of text-only samples, potentially limiting the efficacy of models trained on such data. Recognising that humans utilise cross-modal information to comprehend complex situations or issues, we present a novel approach to address the limitations of current methodologies. In this work, we introduce a Multimodal and Multi-Teacher Knowledge Distillation model for Mental Health Classification, leveraging insights from cross-modal human understanding. Unlike conventional approaches that often rely on simple concatenation to integrate diverse features, our model addresses the challenge of appropriately representing inputs of varying natures (e.g., texts and sounds). To mitigate the computational complexity associated with integrating all features into a single model, we employ a multimodal and multi-teacher architecture. By distributing the learning process across multiple teachers, each specialising in a particular feature extraction aspect, we enhance the overall mental health classification performance. Through experimental validation, we demonstrate the efficacy of our model in achieving improved performance. All relevant codes will be made available upon publication.
Abstract:Esports has rapidly emerged as a global phenomenon with an ever-expanding audience via platforms, like YouTube. Due to the inherent complexity nature of the game, it is challenging for newcomers to comprehend what the event entails. The chaotic nature of online chat, the fast-paced speech of the game commentator, and the game-specific user interface further compound the difficulty for users in comprehending the gameplay. To overcome these challenges, it is crucial to integrate the Multi-Modal (MM) information from the platform and understand the event. The paper introduces a new MM multi-teacher-based game event detection framework, with the ultimate goal of constructing a comprehensive framework that enhances the comprehension of the ongoing game situation. While conventional MM models typically prioritise aligning MM data through concurrent training towards a unified objective, our framework leverages multiple teachers trained independently on different tasks to accomplish the Game Event Detection. The experiment clearly shows the effectiveness of the proposed MM multi-teacher framework.