Abstract:Discontinuous Named Entity Recognition (DNER) presents a challenging problem where entities may be scattered across multiple non-adjacent tokens, making traditional sequence labelling approaches inadequate. Existing methods predominantly rely on custom tagging schemes to handle these discontinuous entities, resulting in models tightly coupled to specific tagging strategies and lacking generalisability across diverse datasets. To address these challenges, we propose TriG-NER, a novel Triplet-Grid Framework that introduces a generalisable approach to learning robust token-level representations for discontinuous entity extraction. Our framework applies triplet loss at the token level, where similarity is defined by word pairs existing within the same entity, effectively pulling together similar and pushing apart dissimilar ones. This approach enhances entity boundary detection and reduces the dependency on specific tagging schemes by focusing on word-pair relationships within a flexible grid structure. We evaluate TriG-NER on three benchmark DNER datasets and demonstrate significant improvements over existing grid-based architectures. These results underscore our framework's effectiveness in capturing complex entity structures and its adaptability to various tagging schemes, setting a new benchmark for discontinuous entity extraction.
Abstract:The significance of mental health classification is paramount in contemporary society, where digital platforms serve as crucial sources for monitoring individuals' well-being. However, existing social media mental health datasets primarily consist of text-only samples, potentially limiting the efficacy of models trained on such data. Recognising that humans utilise cross-modal information to comprehend complex situations or issues, we present a novel approach to address the limitations of current methodologies. In this work, we introduce a Multimodal and Multi-Teacher Knowledge Distillation model for Mental Health Classification, leveraging insights from cross-modal human understanding. Unlike conventional approaches that often rely on simple concatenation to integrate diverse features, our model addresses the challenge of appropriately representing inputs of varying natures (e.g., texts and sounds). To mitigate the computational complexity associated with integrating all features into a single model, we employ a multimodal and multi-teacher architecture. By distributing the learning process across multiple teachers, each specialising in a particular feature extraction aspect, we enhance the overall mental health classification performance. Through experimental validation, we demonstrate the efficacy of our model in achieving improved performance. All relevant codes will be made available upon publication.