Abstract:Extracting Implicit Neural Representations (INRs) on video data poses unique challenges due to the additional temporal dimension. In the context of videos, INRs have predominantly relied on a frame-only parameterization, which sacrifices the spatiotemporal continuity observed in pixel-level (spatial) representations. To mitigate this, we introduce Polynomial Neural Representation for Videos (PNeRV), a parameter-wise efficient, patch-wise INR for videos that preserves spatiotemporal continuity. PNeRV leverages the modeling capabilities of Polynomial Neural Networks to perform the modulation of a continuous spatial (patch) signal with a continuous time (frame) signal. We further propose a custom Hierarchical Patch-wise Spatial Sampling Scheme that ensures spatial continuity while retaining parameter efficiency. We also employ a carefully designed Positional Embedding methodology to further enhance PNeRV's performance. Our extensive experimentation demonstrates that PNeRV outperforms the baselines in conventional Implicit Neural Representation tasks like compression along with downstream applications that require spatiotemporal continuity in the underlying representation. PNeRV not only addresses the challenges posed by video data in the realm of INRs but also opens new avenues for advanced video processing and analysis.
Abstract:With the metaverse slowly becoming a reality and given the rapid pace of developments toward the creation of digital humans, the need for a principled style editing pipeline for human faces is bound to increase manifold. We cater to this need by introducing the Latents2Semantics Autoencoder (L2SAE), a Generative Autoencoder model that facilitates highly localized editing of style attributes of several Regions of Interest (ROIs) in face images. The L2SAE learns separate latent representations for encoded images' structure and style information. Thus, allowing for structure-preserving style editing of the chosen ROIs. The encoded structure representation is a multichannel 2D tensor with reduced spatial dimensions, which captures both local and global structure properties. The style representation is a 1D tensor that captures global style attributes. In our framework, we slice the structure representation to build strong and disentangled correspondences with different ROIs. Consequentially, style editing of the chosen ROIs amounts to a simple combination of (a) the ROI-mask generated from the sliced structure representation and (b) the decoded image with global style changes, generated from the manipulated (using Gaussian noise) global style and unchanged structure tensor. Style editing sans additional human supervision is a significant win over SOTA style editing pipelines because most existing works require additional human effort (supervision) post-training for attributing semantic meaning to style edits. We also do away with iterative-optimization-based inversion or determining controllable latent directions post-training, which requires additional computationally expensive operations. We provide qualitative and quantitative results for the same over multiple applications, such as selective style editing and swapping using test images sampled from several datasets.
Abstract:The success of Deep Generative Models at high-resolution image generation has led to their extensive utilization for style editing of real images. Most existing methods work on the principle of inverting real images onto their latent space, followed by determining controllable directions. Both inversion of real images and determination of controllable latent directions are computationally expensive operations. Moreover, the determination of controllable latent directions requires additional human supervision. This work aims to explore the efficacy of mask-guided feature modulation in the latent space of a Deep Generative Model as a solution to these bottlenecks. To this end, we present the SemanticStyle Autoencoder (SSAE), a deep Generative Autoencoder model that leverages semantic mask-guided latent space manipulation for highly localized photorealistic style editing of real images. We present qualitative and quantitative results for the same and their analysis. This work shall serve as a guiding primer for future work.
Abstract:With an unprecedented increase in the number of agents and systems that aim to navigate the real world using visual cues and the rising impetus for 3D Vision Models, the importance of depth estimation is hard to understate. While supervised methods remain the gold standard in the domain, the copious amount of paired stereo data required to train such models makes them impractical. Most State of the Art (SOTA) works in the self-supervised and unsupervised domain employ a ResNet-based encoder architecture to predict disparity maps from a given input image which are eventually used alongside a camera pose estimator to predict depth without direct supervision. The fully convolutional nature of ResNets makes them susceptible to capturing per-pixel local information only, which is suboptimal for depth prediction. Our key insight for doing away with this bottleneck is to use Vision Transformers, which employ self-attention to capture the global contextual information present in an input image. Our model fuses per-pixel local information learned using two fully convolutional depth encoders with global contextual information learned by a transformer encoder at different scales. It does so using a mask-guided multi-stream convolution in the feature space to achieve state-of-the-art performance on most standard benchmarks.
Abstract:With the advent of an increasing number of Augmented and Virtual Reality applications that aim to perform meaningful and controlled style edits on images of human faces, the impetus for the task of parsing face images to produce accurate and fine-grained semantic segmentation maps is more than ever before. Few State of the Art (SOTA) methods which solve this problem, do so by incorporating priors with respect to facial structure or other face attributes such as expression and pose in their deep classifier architecture. Our endeavour in this work is to do away with the priors and complex pre-processing operations required by SOTA multi-class face segmentation models by reframing this operation as a downstream task post infusion of disentanglement with respect to facial semantic regions of interest (ROIs) in the latent space of a Generative Autoencoder model. We present results for our model's performance on the CelebAMask-HQ and HELEN datasets. The encoded latent space of our model achieves significantly higher disentanglement with respect to semantic ROIs than that of other SOTA works. Moreover, it achieves a 13% faster inference rate and comparable accuracy with respect to the publicly available SOTA for the downstream task of semantic segmentation of face images.