School of Computing KAIST
Abstract:When applying the Transformer architecture to source code, designing a good self-attention mechanism is critical as it affects how node relationship is extracted from the Abstract Syntax Trees (ASTs) of the source code. We present Code Structure Aware Transformer (CSA-Trans), which uses Code Structure Embedder (CSE) to generate specific PE for each node in AST. CSE generates node Positional Encoding (PE) using disentangled attention. To further extend the self-attention capability, we adopt Stochastic Block Model (SBM) attention. Our evaluation shows that our PE captures the relationships between AST nodes better than other graph-related PE techniques. We also show through quantitative and qualitative analysis that SBM attention is able to generate more node specific attention coefficients. We demonstrate that CSA-Trans outperforms 14 baselines in code summarization tasks for both Python and Java, while being 41.92% faster and 25.31% memory efficient in Java dataset compared to AST-Trans and SG-Trans respectively.
Abstract:GUI testing checks if a software system behaves as expected when users interact with its graphical interface, e.g., testing specific functionality or validating relevant use case scenarios. Currently, deciding what to test at this high level is a manual task since automated GUI testing tools target lower level adequacy metrics such as structural code coverage or activity coverage. We propose DroidAgent, an autonomous GUI testing agent for Android, for semantic, intent-driven automation of GUI testing. It is based on Large Language Models and support mechanisms such as long- and short-term memory. Given an Android app, DroidAgent sets relevant task goals and subsequently tries to achieve them by interacting with the app. Our empirical evaluation of DroidAgent using 15 apps from the Themis benchmark shows that it can set up and perform realistic tasks, with a higher level of autonomy. For example, when testing a messaging app, DroidAgent created a second account and added a first account as a friend, testing a realistic use case, without human intervention. On average, DroidAgent achieved 61% activity coverage, compared to 51% for current state-of-the-art GUI testing techniques. Further, manual analysis shows that 317 out of the 374 autonomously created tasks are realistic and relevant to app functionalities, and also that DroidAgent interacts deeply with the apps and covers more features.
Abstract:Following Prof. Mark Harman of Facebook's keynote and formal presentations (which are recorded in the proceedings) there was a wide ranging discussion at the eighth international Genetic Improvement workshop, GI-2020 @ ICSE (held as part of the 42nd ACM/IEEE International Conference on Software Engineering on Friday 3rd July 2020). Topics included industry take up, human factors, explainabiloity (explainability, justifyability, exploitability) and GI benchmarks. We also contrast various recent online approaches (e.g. SBST 2020) to holding virtual computer science conferences and workshops via the WWW on the Internet without face-2-face interaction. Finally we speculate on how the Coronavirus Covid-19 Pandemic will affect research next year and into the future.
Abstract:Deep Neural Networks (DNNs) are rapidly being adopted by the automotive industry, due to their impressive performance in tasks that are essential for autonomous driving. Object segmentation is one such task: its aim is to precisely locate boundaries of objects and classify the identified objects, helping autonomous cars to recognise the road environment and the traffic situation. Not only is this task safety critical, but developing a DNN based object segmentation module presents a set of challenges that are significantly different from traditional development of safety critical software. The development process in use consists of multiple iterations of data collection, labelling, training, and evaluation. Among these stages, training and evaluation are computation intensive while data collection and labelling are manual labour intensive. This paper shows how development of DNN based object segmentation can be improved by exploiting the correlation between Surprise Adequacy (SA) and model performance. The correlation allows us to predict model performance for inputs without manually labelling them. This, in turn, enables understanding of model performance, more guided data collection, and informed decisions about further training. In our industrial case study the technique allows cost savings of up to 50% with negligible evaluation inaccuracy. Furthermore, engineers can trade off cost savings versus the tolerable level of inaccuracy depending on different development phases and scenarios.
Abstract:The testing of Deep Neural Networks (DNNs) has become increasingly important as DNNs are widely adopted by safety critical systems. While many test adequacy criteria have been suggested, automated test input generation for many types of DNNs remains a challenge because the raw input space is too large to randomly sample or to navigate and search for plausible inputs. Consequently, current testing techniques for DNNs depend on small local perturbations to existing inputs, based on the metamorphic testing principle. We propose new ways to search not over the entire image space, but rather over a plausible input space that resembles the true training distribution. This space is constructed using Variational Autoencoders (VAEs), and navigated through their latent vector space. We show that this space helps efficiently produce test inputs that can reveal information about the robustness of DNNs when dealing with realistic tests, opening the field to meaningful exploration through the space of highly structured images.
Abstract:Deep Neural Networks (DNNs) are being adopted in various domains, including safety critical ones. The wide-spread adoption also calls for ways to guide the testing of their accuracy and robustness, for which various test adequacy criteria and input generation methods have been recently introduced. In this paper, we explore the natural subsequent step: given an input that reveals unexpected behaviour in a trained DNN, we propose to repair the DNN using input-output pairs as a specification. This paper introduces Arachne, a novel program repair technique for DNNs. Arachne first performs sensitivity based fault localisation to limit the number of neural weights it has to modify. Subsequently, Arachne uses Particle Swarm Optimisation (PSO) to directly optimise the localised neural weights until the behaviour is corrected. An empirical study using three different benchmark datasets shows that Arachne can reduce the instances of the most frequent misclassification type committed by a pre-trained CIFAR-10 classifier by 27.5%, without any need for additional training data. Patches generated by Arachne tend to be more focused on the targeted misbehaviour than DNN retraining, which is more disruptive to non-targeted behaviour. The overall results suggest the feasibility of patching DNNs using Arachne until they can be retrained properly.
Abstract:Deep Learning (DL) systems are rapidly being adopted in safety and security critical domains, urgently calling for ways to test their correctness and robustness. Testing of DL systems has traditionally relied on manual collection and labelling of data. Recently, a number of coverage criteria based on neuron activation values have been proposed. These criteria essentially count the number of neurons whose activation during the execution of a DL system satisfied certain properties, such as being above predefined thresholds. However, existing coverage criteria are not sufficiently fine grained to capture subtle behaviours exhibited by DL systems. Moreover, evaluations have focused on showing correlation between adversarial examples and proposed criteria rather than evaluating and guiding their use for actual testing of DL systems. We propose a novel test adequacy criterion for testing of DL systems, called Surprise Adequacy for Deep Learning Systems (SADL), which is based on the behaviour of DL systems with respect to their training data. We measure the surprise of an input as the difference in DL system's behaviour between the input and the training data (i.e., what was learnt during training), and subsequently develop this as an adequacy criterion: a good test input should be sufficiently but not overtly surprising compared to training data. Empirical evaluation using a range of DL systems from simple image classifiers to autonomous driving car platforms shows that systematic sampling of inputs based on their surprise can improve classification accuracy of DL systems against adversarial examples by up to 77.5% via retraining.