ML-based systems are software systems that incorporates machine learning components such as Deep Neural Networks (DNNs) or Large Language Models (LLMs). While such systems enable advanced features such as high performance computer vision, natural language processing, and code generation, their internal behaviour remain largely opaque to traditional dynamic analysis such as testing: existing analysis typically concern only what is observable from the outside, such as input similarity or class label changes. We propose semantic flow, a concept designed to capture the internal behaviour of ML-based system and to provide a platform for traditional dynamic analysis techniques to be adapted to. Semantic flow combines the idea of control flow with internal states taken from executions of ML-based systems, such as activation values of a specific layer in a DNN, or embeddings of LLM responses at a specific inference step of LLM agents. The resulting representation, summarised as semantic flow graphs, can capture internal decisions that are not explicitly represented in the traditional control flow of ML-based systems. We propose the idea of semantic flow, introduce two examples using a DNN and an LLM agent, and finally sketch its properties and how it can be used to adapt existing dynamic analysis techniques for use in ML-based software systems.