Abstract:Modern QA systems entail retrieval-augmented generation (RAG) for accurate and trustworthy responses. However, the inherent gap between user queries and relevant documents hinders precise matching. Motivated by our conical distribution hypothesis, which posits that potential queries and documents form a cone-like structure in the embedding space, we introduce QAEncoder, a training-free approach to bridge this gap. Specifically, QAEncoder estimates the expectation of potential queries in the embedding space as a robust surrogate for the document embedding, and attaches document fingerprints to effectively distinguish these embeddings. Extensive experiments on fourteen embedding models across six languages and eight datasets validate QAEncoder's alignment capability, which offers a plug-and-play solution that seamlessly integrates with existing RAG architectures and training-based methods.
Abstract:In this paper, we address the problem of plausible object placement for the challenging task of realistic image composition. We propose DiffPop, the first framework that utilizes plausibility-guided denoising diffusion probabilistic model to learn the scale and spatial relations among multiple objects and the corresponding scene image. First, we train an unguided diffusion model to directly learn the object placement parameters in a self-supervised manner. Then, we develop a human-in-the-loop pipeline which exploits human labeling on the diffusion-generated composite images to provide the weak supervision for training a structural plausibility classifier. The classifier is further used to guide the diffusion sampling process towards generating the plausible object placement. Experimental results verify the superiority of our method for producing plausible and diverse composite images on the new Cityscapes-OP dataset and the public OPA dataset, as well as demonstrate its potential in applications such as data augmentation and multi-object placement tasks. Our dataset and code will be released.