Abstract:Rapid advancement of antenna technology catalyses the popularization of extremely large-scale multiple-input multiple-output (XL-MIMO) antenna arrays, which pose unique challenges for localization with the inescapable near-field effect. In this paper, we propose an efficient near-field localization algorithm by leveraging a sectored uniform circular array (sUCA). In particular, we first customize a backprojection algorithm in the polar coordinate for sUCA-enabled near-field localization, which facilitates the target detection procedure. We then analyze the resolutions in both angular and distance domains via deriving the interval of zero-crossing points, and further unravel the minimum required number of antennas to eliminate grating lobes. The proposed localization method is finally implemented using fast Fourier transform (FFT) to reduce computational complexity. Simulation results verify the resolution analysis and demonstrate that the proposed method remarkably outperforms conventional localization algorithms in terms of localization accuracy. Moreover, the low-complexity FFT implementation achieves an average runtime that is hundreds of times faster when large numbers of antenna elements are employed.
Abstract:Future sixth-generation (6G) systems are expected to leverage extremely large-scale multiple-input multiple-output (XL-MIMO) technology, which significantly expands the range of the near-field region. The spherical wavefront characteristics in the near field introduce additional degrees of freedom (DoFs), namely distance and angle, into the channel model, which leads to unique challenges in channel estimation (CE). In this paper, we propose a new sensing-enhanced uplink CE scheme for near-field XL-MIMO, which notably reduces the required quantity of baseband samples and the dictionary size. In particular, we first propose a sensing method that can be accomplished in a single time slot. It employs power sensors embedded within the antenna elements to measure the received power pattern rather than baseband samples. A time inversion algorithm is then proposed to precisely estimate the locations of users and scatterers, which offers a substantially lower computational complexity. Based on the estimated locations from sensing, a novel dictionary is then proposed by considering the eigen-problem based on the near-field transmission model, which facilitates efficient near-field CE with less baseband sampling and a more lightweight dictionary. Moreover, we derive the general form of the eigenvectors associated with the near-field channel matrix, revealing their noteworthy connection to the discrete prolate spheroidal sequence (DPSS). Simulation results unveil that the proposed time inversion algorithm achieves accurate localization with power measurements only, and remarkably outperforms various widely-adopted algorithms in terms of computational complexity. Furthermore, the proposed eigen-dictionary considerably improves the accuracy in CE with a compact dictionary size and a drastic reduction in baseband samples by up to 77%.
Abstract:Future sixth-generation (6G) systems are expected to leverage extremely large-scale multiple-input multiple-output (XL-MIMO) technology, which significantly expands the range of the near-field region. While accurate channel estimation is essential for beamforming and data detection, the unique characteristics of near-field channels pose additional challenges to the effective acquisition of channel state information. In this paper, we propose a novel codebook design, which allows efficient near-field channel estimation with significantly reduced codebook size. Specifically, we consider the eigen-problem based on the near-field electromagnetic wave transmission model. Moreover, we derive the general form of the eigenvectors associated with the near-field channel matrix, revealing their noteworthy connection to the discrete prolate spheroidal sequence (DPSS). Based on the proposed near-field codebook design, we further introduce a two-step channel estimation scheme. Simulation results demonstrate that the proposed codebook design not only achieves superior sparsification performance of near-field channels with a lower leakage effect, but also significantly improves the accuracy in compressive sensing channel estimation.
Abstract:The Space-Air-Ground-Sea integrated network calls for more robust and secure transmission techniques against jamming. In this paper, we propose a textual semantic transmission framework for robust transmission, which utilizes the advanced natural language processing techniques to model and encode sentences. Specifically, the textual sentences are firstly split into tokens using wordpiece algorithm, and are embedded to token vectors for semantic extraction by Transformer-based encoder. The encoded data are quantized to a fixed length binary sequence for transmission, where binary erasure, symmetric, and deletion channels are considered for transmission. The received binary sequences are further decoded by the transformer decoders into tokens used for sentence reconstruction. Our proposed approach leverages the power of neural networks and attention mechanism to provide reliable and efficient communication of textual data in challenging wireless environments, and simulation results on semantic similarity and bilingual evaluation understudy prove the superiority of the proposed model in semantic transmission.
Abstract:This paper focuses on advancing outdoor wireless systems to better support ubiquitous extended reality (XR) applications, and close the gap with current indoor wireless transmission capabilities. We propose a hybrid knowledge-data driven method for channel semantic acquisition and multi-user beamforming in cell-free massive multiple-input multiple-output (MIMO) systems. Specifically, we firstly propose a data-driven multiple layer perceptron (MLP)-Mixer-based auto-encoder for channel semantic acquisition, where the pilot signals, CSI quantizer for channel semantic embedding, and CSI reconstruction for channel semantic extraction are jointly optimized in an end-to-end manner. Moreover, based on the acquired channel semantic, we further propose a knowledge-driven deep-unfolding multi-user beamformer, which is capable of achieving good spectral efficiency with robustness to imperfect CSI in outdoor XR scenarios. By unfolding conventional successive over-relaxation (SOR)-based linear beamforming scheme with deep learning, the proposed beamforming scheme is capable of adaptively learning the optimal parameters to accelerate convergence and improve the robustness to imperfect CSI. The proposed deep unfolding beamforming scheme can be used for access points (APs) with fully-digital array and APs with hybrid analog-digital array. Simulation results demonstrate the effectiveness of our proposed scheme in improving the accuracy of channel acquisition, as well as reducing complexity in both CSI acquisition and beamformer design. The proposed beamforming method achieves approximately 96% of the converged spectrum efficiency performance after only three iterations in downlink transmission, demonstrating its efficacy and potential to improve outdoor XR applications.
Abstract:The rapid development of communication technologies in the past decades has provided immense vertical opportunities for individuals and enterprises. However, conventional terrestrial cellular networks have unfortunately neglected the huge geographical digital divide, since high bandwidth wireless coverage is concentrated to urban areas. To meet the goal of ``connecting the unconnected'', integrating low Earth orbit (LEO) satellites with the terrestrial cellular networks has been widely considered as a promising solution. In this article, we first introduce the development roadmap of LEO satellite constellations (SatCons), including early attempts in LEO satellites with the emerging LEO constellations. Further, we discuss the unique opportunities of employing LEO SatCons for the delivery of integrating 5G networks. Specifically, we present their key performance indicators, which offer important guidelines for the design of associated enabling techniques, and then discuss the potential impact of integrating LEO SatCons with typical 5G use cases, where we engrave our vision of various vertical domains reshaped by LEO SatCons. Technical challenges are finally provided to specify future research directions.
Abstract:Integrating large intelligent reflecting surfaces (IRS) into millimeter-wave (mmWave) massive multi-input-multi-ouput (MIMO) has been a promising approach for improved coverage and throughput. Most existing work assumes the ideal channel estimation, which can be challenging due to the high-dimensional cascaded MIMO channels and passive reflecting elements. Therefore, this paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems to reduce the training overhead. Specifically, we first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels. At the channel training stage, only a small proportion of elements will be successively activated to sound the partial channels. Moreover, the complete channel matrix can be reconstructed from the limited measurements based on compressive sensing, whereby the common sparsity of angular domain mmWave MIMO channels among different subcarriers is leveraged for improved accuracy. Besides, a complex-valued denoising convolution neural network (CV-DnCNN) is further proposed for enhanced performance. Simulation results demonstrate the superiority of the proposed solution over state-of-the-art solutions.
Abstract:Recent advance of large scale similarity search involves using deeply learned representations to improve the search accuracy and use vector quantization methods to increase the search speed. However, how to learn deep representations that strongly preserve similarities between data pairs and can be accurately quantized via vector quantization remains a challenging task. Existing methods simply leverage quantization loss and similarity loss, which result in unexpectedly biased back-propagating gradients and affect the search performances. To this end, we propose a novel gradient snapping layer (GSL) to directly regularize the back-propagating gradient towards a neighboring codeword, the generated gradients are un-biased for reducing similarity loss and also propel the learned representations to be accurately quantized. Joint deep representation and vector quantization learning can be easily performed by alternatively optimize the quantization codebook and the deep neural network. The proposed framework is compatible with various existing vector quantization approaches. Experimental results demonstrate that the proposed framework is effective, flexible and outperforms the state-of-the-art large scale similarity search methods.
Abstract:We propose a novel distance to calculate distance between high dimensional vector pairs, utilizing vector quantization generated encodings. Vector quantization based methods are successful in handling large scale high dimensional data. These methods compress vectors into short encodings, and allow efficient distance computation between an uncompressed vector and compressed dataset without decompressing explicitly. However for large datasets, these distance computing methods perform excessive computations. We avoid excessive computations by storing the encodings on an Encoding Tree(E-Tree), interestingly the memory consumption is also lowered. We also propose Encoding Forest(E-Forest) to further lower the computation cost. E-Tree and E-Forest is compatible with various existing quantization-based methods. We show by experiments our methods speed-up distance computing for high dimensional data drastically, and various existing algorithms can benefit from our methods.
Abstract:Quantization methods have been introduced to perform large scale approximate nearest search tasks. Residual Vector Quantization (RVQ) is one of the effective quantization methods. RVQ uses a multi-stage codebook learning scheme to lower the quantization error stage by stage. However, there are two major limitations for RVQ when applied to on high-dimensional approximate nearest neighbor search: 1. The performance gain diminishes quickly with added stages. 2. Encoding a vector with RVQ is actually NP-hard. In this paper, we propose an improved residual vector quantization (IRVQ) method, our IRVQ learns codebook with a hybrid method of subspace clustering and warm-started k-means on each stage to prevent performance gain from dropping, and uses a multi-path encoding scheme to encode a vector with lower distortion. Experimental results on the benchmark datasets show that our method gives substantially improves RVQ and delivers better performance compared to the state-of-the-art.