Abstract:This study explores the use of Generative Adversarial Networks (GANs) to detect AI deepfakes and fraudulent activities in online payment systems. With the growing prevalence of deepfake technology, which can manipulate facial features in images and videos, the potential for fraud in online transactions has escalated. Traditional security systems struggle to identify these sophisticated forms of fraud. This research proposes a novel GAN-based model that enhances online payment security by identifying subtle manipulations in payment images. The model is trained on a dataset consisting of real-world online payment images and deepfake images generated using advanced GAN architectures, such as StyleGAN and DeepFake. The results demonstrate that the proposed model can accurately distinguish between legitimate transactions and deepfakes, achieving a high detection rate above 95%. This approach significantly improves the robustness of payment systems against AI-driven fraud. The paper contributes to the growing field of digital security, offering insights into the application of GANs for fraud detection in financial services. Keywords- Payment Security, Image Recognition, Generative Adversarial Networks, AI Deepfake, Fraudulent Activities
Abstract:With increasing numbers of vulnerabilities exposed on the internet, autonomous penetration testing (pentesting) has emerged as an emerging research area, while reinforcement learning (RL) is a natural fit for studying autonomous pentesting. Previous research in RL-based autonomous pentesting mainly focused on enhancing agents' learning efficacy within abstract simulated training environments. They overlooked the applicability and generalization requirements of deploying agents' policies in real-world environments that differ substantially from their training settings. In contrast, for the first time, we shift focus to the pentesting agents' ability to generalize across unseen real environments. For this purpose, we propose a Generalizable Autonomous Pentesting framework (namely GAP) for training agents capable of drawing inferences from one to another -- a key requirement for the broad application of autonomous pentesting and a hallmark of human intelligence. GAP introduces a Real-to-Sim-to-Real pipeline with two key methods: domain randomization and meta-RL learning. Specifically, we are among the first to apply domain randomization in autonomous pentesting and propose a large language model-powered domain randomization method for synthetic environment generation. We further apply meta-RL to improve the agents' generalization ability in unseen environments by leveraging the synthetic environments. The combination of these two methods can effectively bridge the generalization gap and improve policy adaptation performance. Experiments are conducted on various vulnerable virtual machines, with results showing that GAP can (a) enable policy learning in unknown real environments, (b) achieve zero-shot policy transfer in similar environments, and (c) realize rapid policy adaptation in dissimilar environments.