Abstract:Model editing aims at selectively updating a small subset of a neural model's parameters with an interpretable strategy to achieve desired modifications. It can significantly reduce computational costs to adapt to large language models (LLMs). Given its ability to precisely target critical components within LLMs, model editing shows great potential for efficient fine-tuning applications. In this work, we investigate model editing to serve an efficient method for adapting LLMs to solve aspect-based sentiment classification. Through causal interventions, we trace and determine which neuron hidden states are essential for the prediction of the model. By performing interventions and restorations on each component of an LLM, we identify the importance of these components for aspect-based sentiment classification. Our findings reveal that a distinct set of mid-layer representations is essential for detecting the sentiment polarity of given aspect words. Leveraging these insights, we develop a model editing approach that focuses exclusively on these critical parts of the LLM, leading to a more efficient method for adapting LLMs. Our in-domain and out-of-domain experiments demonstrate that this approach achieves competitive results compared to the currently strongest methods with significantly fewer trainable parameters, highlighting a more efficient and interpretable fine-tuning strategy.
Abstract:Effective training of language models (LMs) for mathematical reasoning tasks demands high-quality supervised fine-tuning data. Besides obtaining annotations from human experts, a common alternative is sampling from larger and more powerful LMs. However, this knowledge distillation approach can be costly and unstable, particularly when relying on closed-source, proprietary LMs like GPT-4, whose behaviors are often unpredictable. In this work, we demonstrate that the reasoning abilities of small-scale LMs can be enhanced through self-training, a process where models learn from their own outputs. We also show that the conventional self-training can be further augmented by a preference learning algorithm called Direct Preference Optimization (DPO). By integrating DPO into self-training, we leverage preference data to guide LMs towards more accurate and diverse chain-of-thought reasoning. We evaluate our method across various mathematical reasoning tasks using different base models. Our experiments show that this approach not only improves LMs' reasoning performance but also offers a more cost-effective and scalable solution compared to relying on large proprietary LMs.
Abstract:To achieve reliable mining results for massive vessel trajectories, one of the most important challenges is how to efficiently compute the similarities between different vessel trajectories. The computation of vessel trajectory similarity has recently attracted increasing attention in the maritime data mining research community. However, traditional shape- and warping-based methods often suffer from several drawbacks such as high computational cost and sensitivity to unwanted artifacts and non-uniform sampling rates, etc. To eliminate these drawbacks, we propose an unsupervised learning method which automatically extracts low-dimensional features through a convolutional auto-encoder (CAE). In particular, we first generate the informative trajectory images by remapping the raw vessel trajectories into two-dimensional matrices while maintaining the spatio-temporal properties. Based on the massive vessel trajectories collected, the CAE can learn the low-dimensional representations of informative trajectory images in an unsupervised manner. The trajectory similarity is finally equivalent to efficiently computing the similarities between the learned low-dimensional features, which strongly correlate with the raw vessel trajectories. Comprehensive experiments on realistic data sets have demonstrated that the proposed method largely outperforms traditional trajectory similarity computation methods in terms of efficiency and effectiveness. The high-quality trajectory clustering performance could also be guaranteed according to the CAE-based trajectory similarity computation results.