Abstract:This paper comprehensively reviews recent advances in underwater acoustic signal denoising, an area critical for improving the reliability and clarity of underwater communication and monitoring systems. Despite significant progress in the field, the complex nature of underwater environments poses unique challenges that complicate the denoising process. We begin by outlining the fundamental challenges associated with underwater acoustic signal processing, including signal attenuation, noise variability, and the impact of environmental factors. The review then systematically categorizes and discusses various denoising algorithms, such as conventional, decomposition-based, and learning-based techniques, highlighting their applications, advantages, and limitations. Evaluation metrics and experimental datasets are also reviewed. The paper concludes with a list of open questions and recommendations for future research directions, emphasizing the need for developing more robust denoising techniques that can adapt to the dynamic underwater acoustic environment.
Abstract:Vessel trajectory clustering, a crucial component of the maritime intelligent transportation systems, provides valuable insights for applications such as anomaly detection and trajectory prediction. This paper presents a comprehensive survey of the most prevalent distance-based vessel trajectory clustering methods, which encompass two main steps: trajectory similarity measurement and clustering. Initially, we conducted a thorough literature review using relevant keywords to gather and summarize pertinent research papers and datasets. Then, this paper discussed the principal methods of data pre-processing that prepare data for further analysis. The survey progresses to detail the leading algorithms for measuring vessel trajectory similarity and the main clustering techniques used in the field today. Furthermore, the various applications of trajectory clustering within the maritime context are explored. Finally, the paper evaluates the effectiveness of different algorithm combinations and pre-processing methods through experimental analysis, focusing on their impact on the performance of distance-based trajectory clustering algorithms. The experimental results demonstrate the effectiveness of various trajectory clustering algorithms and notably highlight the significant improvements that trajectory compression techniques contribute to the efficiency and accuracy of trajectory clustering. This comprehensive approach ensures a deep understanding of current capabilities and future directions in vessel trajectory clustering.
Abstract:Factor analysis acts a pivotal role in enhancing maritime safety. Most previous studies conduct factor analysis within the framework of incident-related label prediction, where the developed models can be categorized into short-term and long-term prediction models. The long-term models offer a more strategic approach, enabling more proactive risk management, compared to the short-term ones. Nevertheless, few studies have devoted to rigorously identifying the key factors for the long-term prediction and undertaking comprehensive factor analysis. Hence, this study aims to delve into the key factors for predicting the incident risk levels in the subsequent year given a specific datestamp. The majority of candidate factors potentially contributing to the incident risk are collected from vessels' historical safety performance data spanning up to five years. An improved embedded feature selection, which integrates Random Forest classifier with a feature filtering process is proposed to identify key risk-contributing factors from the candidate pool. The results demonstrate superior performance of the proposed method in incident prediction and factor interpretability. Comprehensive analysis is conducted upon the key factors, which could help maritime stakeholders formulate management strategies for incident prevenion.
Abstract:To achieve reliable mining results for massive vessel trajectories, one of the most important challenges is how to efficiently compute the similarities between different vessel trajectories. The computation of vessel trajectory similarity has recently attracted increasing attention in the maritime data mining research community. However, traditional shape- and warping-based methods often suffer from several drawbacks such as high computational cost and sensitivity to unwanted artifacts and non-uniform sampling rates, etc. To eliminate these drawbacks, we propose an unsupervised learning method which automatically extracts low-dimensional features through a convolutional auto-encoder (CAE). In particular, we first generate the informative trajectory images by remapping the raw vessel trajectories into two-dimensional matrices while maintaining the spatio-temporal properties. Based on the massive vessel trajectories collected, the CAE can learn the low-dimensional representations of informative trajectory images in an unsupervised manner. The trajectory similarity is finally equivalent to efficiently computing the similarities between the learned low-dimensional features, which strongly correlate with the raw vessel trajectories. Comprehensive experiments on realistic data sets have demonstrated that the proposed method largely outperforms traditional trajectory similarity computation methods in terms of efficiency and effectiveness. The high-quality trajectory clustering performance could also be guaranteed according to the CAE-based trajectory similarity computation results.