Abstract:This work continues to investigate the link between differentially private (DP) and online learning. Alon, Livni, Malliaris, and Moran (2019) showed that for binary concept classes, DP learnability of a given class implies that it has a finite Littlestone dimension (equivalently, that it is online learnable). Their proof relies on a model-theoretic result by Hodges (1997), which demonstrates that any binary concept class with a large Littlestone dimension contains a large subclass of thresholds. In a follow-up work, Jung, Kim, and Tewari (2020) extended this proof to multiclass PAC learning with a bounded number of labels. Unfortunately, Hodges's result does not apply in other natural settings such as multiclass PAC learning with an unbounded label space, and PAC learning of partial concept classes. This naturally raises the question of whether DP learnability continues to imply online learnability in more general scenarios: indeed, Alon, Hanneke, Holzman, and Moran (2021) explicitly leave it as an open question in the context of partial concept classes, and the same question is open in the general multiclass setting. In this work, we give a positive answer to these questions showing that for general classification tasks, DP learnability implies online learnability. Our proof reasons directly about Littlestone trees, without relying on thresholds. We achieve this by establishing several Ramsey-type theorems for trees, which might be of independent interest.
Abstract:Credit attribution is crucial across various fields. In academic research, proper citation acknowledges prior work and establishes original contributions. Similarly, in generative models, such as those trained on existing artworks or music, it is important to ensure that any generated content influenced by these works appropriately credits the original creators. We study credit attribution by machine learning algorithms. We propose new definitions--relaxations of Differential Privacy--that weaken the stability guarantees for a designated subset of $k$ datapoints. These $k$ datapoints can be used non-stably with permission from their owners, potentially in exchange for compensation. Meanwhile, the remaining datapoints are guaranteed to have no significant influence on the algorithm's output. Our framework extends well-studied notions of stability, including Differential Privacy ($k = 0$), differentially private learning with public data (where the $k$ public datapoints are fixed in advance), and stable sample compression (where the $k$ datapoints are selected adaptively by the algorithm). We examine the expressive power of these stability notions within the PAC learning framework, provide a comprehensive characterization of learnability for algorithms adhering to these principles, and propose directions and questions for future research.
Abstract:We study multiclass PAC learning with bandit feedback, where inputs are classified into one of $K$ possible labels and feedback is limited to whether or not the predicted labels are correct. Our main contribution is in designing a novel learning algorithm for the agnostic $(\varepsilon,\delta)$-PAC version of the problem, with sample complexity of $O\big( (\operatorname{poly}(K) + 1 / \varepsilon^2) \log (|H| / \delta) \big)$ for any finite hypothesis class $H$. In terms of the leading dependence on $\varepsilon$, this improves upon existing bounds for the problem, that are of the form $O(K/\varepsilon^2)$. We also provide an extension of this result to general classes and establish similar sample complexity bounds in which $\log |H|$ is replaced by the Natarajan dimension. This matches the optimal rate in the full-information version of the problem and resolves an open question studied by Daniely, Sabato, Ben-David, and Shalev-Shwartz (2011) who demonstrated that the multiplicative price of bandit feedback in realizable PAC learning is $\Theta(K)$. We complement this by revealing a stark contrast with the agnostic case, where the price of bandit feedback is only $O(1)$ as $\varepsilon \to 0$. Our algorithm utilizes a stochastic optimization technique to minimize a log-barrier potential based on Frank-Wolfe updates for computing a low-variance exploration distribution over the hypotheses, and is made computationally efficient provided access to an ERM oracle over $H$.
Abstract:Can a deep neural network be approximated by a small decision tree based on simple features? This question and its variants are behind the growing demand for machine learning models that are *interpretable* by humans. In this work we study such questions by introducing *interpretable approximations*, a notion that captures the idea of approximating a target concept $c$ by a small aggregation of concepts from some base class $\mathcal{H}$. In particular, we consider the approximation of a binary concept $c$ by decision trees based on a simple class $\mathcal{H}$ (e.g., of bounded VC dimension), and use the tree depth as a measure of complexity. Our primary contribution is the following remarkable trichotomy. For any given pair of $\mathcal{H}$ and $c$, exactly one of these cases holds: (i) $c$ cannot be approximated by $\mathcal{H}$ with arbitrary accuracy; (ii) $c$ can be approximated by $\mathcal{H}$ with arbitrary accuracy, but there exists no universal rate that bounds the complexity of the approximations as a function of the accuracy; or (iii) there exists a constant $\kappa$ that depends only on $\mathcal{H}$ and $c$ such that, for *any* data distribution and *any* desired accuracy level, $c$ can be approximated by $\mathcal{H}$ with a complexity not exceeding $\kappa$. This taxonomy stands in stark contrast to the landscape of supervised classification, which offers a complex array of distribution-free and universally learnable scenarios. We show that, in the case of interpretable approximations, even a slightly nontrivial a-priori guarantee on the complexity of approximations implies approximations with constant (distribution-free and accuracy-free) complexity. We extend our trichotomy to classes $\mathcal{H}$ of unbounded VC dimension and give characterizations of interpretability based on the algebra generated by $\mathcal{H}$.
Abstract:This work studies embedding of arbitrary VC classes in well-behaved VC classes, focusing particularly on extremal classes. Our main result expresses an impossibility: such embeddings necessarily require a significant increase in dimension. In particular, we prove that for every $d$ there is a class with VC dimension $d$ that cannot be embedded in any extremal class of VC dimension smaller than exponential in $d$. In addition to its independent interest, this result has an important implication in learning theory, as it reveals a fundamental limitation of one of the most extensively studied approaches to tackling the long-standing sample compression conjecture. Concretely, the approach proposed by Floyd and Warmuth entails embedding any given VC class into an extremal class of a comparable dimension, and then applying an optimal sample compression scheme for extremal classes. However, our results imply that this strategy would in some cases result in a sample compression scheme at least exponentially larger than what is predicted by the sample compression conjecture. The above implications follow from a general result we prove: any extremal class with VC dimension $d$ has dual VC dimension at most $2d+1$. This bound is exponentially smaller than the classical bound $2^{d+1}-1$ of Assouad, which applies to general concept classes (and is known to be unimprovable for some classes). We in fact prove a stronger result, establishing that $2d+1$ upper bounds the dual Radon number of extremal classes. This theorem represents an abstraction of the classical Radon theorem for convex sets, extending its applicability to a wider combinatorial framework, without relying on the specifics of Euclidean convexity. The proof utilizes the topological method and is primarily based on variants of the Topological Radon Theorem.
Abstract:We revisit the classical problem of multiclass classification with bandit feedback (Kakade, Shalev-Shwartz and Tewari, 2008), where each input classifies to one of $K$ possible labels and feedback is restricted to whether the predicted label is correct or not. Our primary inquiry is with regard to the dependency on the number of labels $K$, and whether $T$-step regret bounds in this setting can be improved beyond the $\smash{\sqrt{KT}}$ dependence exhibited by existing algorithms. Our main contribution is in showing that the minimax regret of bandit multiclass is in fact more nuanced, and is of the form $\smash{\widetilde{\Theta}\left(\min \left\{|\mathcal{H}| + \sqrt{T}, \sqrt{KT \log |{\mathcal{H}|}} \right\} \right) }$, where $\mathcal{H}$ is the underlying (finite) hypothesis class. In particular, we present a new bandit classification algorithm that guarantees regret $\smash{\widetilde{O}(|\mathcal{H}|+\sqrt{T})}$, improving over classical algorithms for moderately-sized hypothesis classes, and give a matching lower bound establishing tightness of the upper bounds (up to log-factors) in all parameter regimes.
Abstract:List learning is a variant of supervised classification where the learner outputs multiple plausible labels for each instance rather than just one. We investigate classical principles related to generalization within the context of list learning. Our primary goal is to determine whether classical principles in the PAC setting retain their applicability in the domain of list PAC learning. We focus on uniform convergence (which is the basis of Empirical Risk Minimization) and on sample compression (which is a powerful manifestation of Occam's Razor). In classical PAC learning, both uniform convergence and sample compression satisfy a form of `completeness': whenever a class is learnable, it can also be learned by a learning rule that adheres to these principles. We ask whether the same completeness holds true in the list learning setting. We show that uniform convergence remains equivalent to learnability in the list PAC learning setting. In contrast, our findings reveal surprising results regarding sample compression: we prove that when the label space is $Y=\{0,1,2\}$, then there are 2-list-learnable classes that cannot be compressed. This refutes the list version of the sample compression conjecture by Littlestone and Warmuth (1986). We prove an even stronger impossibility result, showing that there are $2$-list-learnable classes that cannot be compressed even when the reconstructed function can work with lists of arbitrarily large size. We prove a similar result for (1-list) PAC learnable classes when the label space is unbounded. This generalizes a recent result by arXiv:2308.06424.
Abstract:Recent advances in algorithmic design show how to utilize predictions obtained by machine learning models from past and present data. These approaches have demonstrated an enhancement in performance when the predictions are accurate, while also ensuring robustness by providing worst-case guarantees when predictions fail. In this paper we focus on online problems; prior research in this context was focused on a paradigm where the predictor is pre-trained on past data and then used as a black box (to get the predictions it was trained for). In contrast, in this work, we unpack the predictor and integrate the learning problem it gives rise for within the algorithmic challenge. In particular we allow the predictor to learn as it receives larger parts of the input, with the ultimate goal of designing online learning algorithms specifically tailored for the algorithmic task at hand. Adopting this perspective, we focus on a number of fundamental problems, including caching and scheduling, which have been well-studied in the black-box setting. For each of the problems we consider, we introduce new algorithms that take advantage of explicit learning algorithms which we carefully design towards optimizing the overall performance. We demonstrate the potential of our approach by deriving performance bounds which improve over those established in previous work.
Abstract:In contrast with standard classification tasks, strategic classification involves agents strategically modifying their features in an effort to receive favorable predictions. For instance, given a classifier determining loan approval based on credit scores, applicants may open or close their credit cards to fool the classifier. The learning goal is to find a classifier robust against strategic manipulations. Various settings, based on what and when information is known, have been explored in strategic classification. In this work, we focus on addressing a fundamental question: the learnability gaps between strategic classification and standard learning. We essentially show that any learnable class is also strategically learnable: we first consider a fully informative setting, where the manipulation structure (which is modeled by a manipulation graph $G^\star$) is known and during training time the learner has access to both the pre-manipulation data and post-manipulation data. We provide nearly tight sample complexity and regret bounds, offering significant improvements over prior results. Then, we relax the fully informative setting by introducing two natural types of uncertainty. First, following Ahmadi et al. (2023), we consider the setting in which the learner only has access to the post-manipulation data. We improve the results of Ahmadi et al. (2023) and close the gap between mistake upper bound and lower bound raised by them. Our second relaxation of the fully informative setting introduces uncertainty to the manipulation structure. That is, we assume that the manipulation graph is unknown but belongs to a known class of graphs. We provide nearly tight bounds on the learning complexity in various unknown manipulation graph settings. Notably, our algorithm in this setting is of independent interest and can be applied to other problems such as multi-label learning.
Abstract:Consider the domain of multiclass classification within the adversarial online setting. What is the price of relying on bandit feedback as opposed to full information? To what extent can an adaptive adversary amplify the loss compared to an oblivious one? To what extent can a randomized learner reduce the loss compared to a deterministic one? We study these questions in the mistake bound model and provide nearly tight answers. We demonstrate that the optimal mistake bound under bandit feedback is at most $O(k)$ times higher than the optimal mistake bound in the full information case, where $k$ represents the number of labels. This bound is tight and provides an answer to an open question previously posed and studied by Daniely and Helbertal ['13] and by Long ['17, '20], who focused on deterministic learners. Moreover, we present nearly optimal bounds of $\tilde{\Theta}(k)$ on the gap between randomized and deterministic learners, as well as between adaptive and oblivious adversaries in the bandit feedback setting. This stands in contrast to the full information scenario, where adaptive and oblivious adversaries are equivalent, and the gap in mistake bounds between randomized and deterministic learners is a constant multiplicative factor of $2$. In addition, our results imply that in some cases the optimal randomized mistake bound is approximately the square-root of its deterministic parallel. Previous results show that this is essentially the smallest it can get.