Abstract:We introduce and study the spherical dimension, a natural topological relaxation of the VC dimension that unifies several results in learning theory where topology plays a key role in the proofs. The spherical dimension is defined by extending the set of realizable datasets (used to define the VC dimension) to the continuous space of realizable distributions. In this space, a shattered set of size d (in the VC sense) is completed into a continuous object, specifically a d-dimensional sphere of realizable distributions. The spherical dimension is then defined as the dimension of the largest sphere in this space. Thus, the spherical dimension is at least the VC dimension. The spherical dimension serves as a common foundation for leveraging the Borsuk-Ulam theorem and related topological tools. We demonstrate the utility of the spherical dimension in diverse applications, including disambiguations of partial concept classes, reductions from classification to stochastic convex optimization, stability and replicability, and sample compression schemes. Perhaps surprisingly, we show that the open question posed by Alon, Hanneke, Holzman, and Moran (FOCS 2021) of whether there exist non-trivial disambiguations for halfspaces with margin is equivalent to the basic open question of whether the VC and spherical dimensions are finite together.
Abstract:Many practical prediction algorithms represent inputs in Euclidean space and replace the discrete 0/1 classification loss with a real-valued surrogate loss, effectively reducing classification tasks to stochastic optimization. In this paper, we investigate the expressivity of such reductions in terms of key resources, including dimension and the role of randomness. We establish bounds on the minimum Euclidean dimension $D$ needed to reduce a concept class with VC dimension $d$ to a Stochastic Convex Optimization (SCO) problem in $\mathbb{R}^D$, formally addressing the intuitive interpretation of the VC dimension as the number of parameters needed to learn the class. To achieve this, we develop a generalization of the Borsuk-Ulam Theorem that combines the classical topological approach with convexity considerations. Perhaps surprisingly, we show that, in some cases, the number of parameters $D$ must be exponentially larger than the VC dimension $d$, even if the reduction is only slightly non-trivial. We also present natural classification tasks that can be represented in much smaller dimensions by leveraging randomness, as seen in techniques like random initialization. This result resolves an open question posed by Kamath, Montasser, and Srebro (COLT 2020). Our findings introduce new variants of \emph{dimension complexity} (also known as \emph{sign-rank}), a well-studied parameter in learning and complexity theory. Specifically, we define an approximate version of sign-rank and another variant that captures the minimum dimension required for a reduction to SCO. We also propose several open questions and directions for future research.
Abstract:List learning is a variant of supervised classification where the learner outputs multiple plausible labels for each instance rather than just one. We investigate classical principles related to generalization within the context of list learning. Our primary goal is to determine whether classical principles in the PAC setting retain their applicability in the domain of list PAC learning. We focus on uniform convergence (which is the basis of Empirical Risk Minimization) and on sample compression (which is a powerful manifestation of Occam's Razor). In classical PAC learning, both uniform convergence and sample compression satisfy a form of `completeness': whenever a class is learnable, it can also be learned by a learning rule that adheres to these principles. We ask whether the same completeness holds true in the list learning setting. We show that uniform convergence remains equivalent to learnability in the list PAC learning setting. In contrast, our findings reveal surprising results regarding sample compression: we prove that when the label space is $Y=\{0,1,2\}$, then there are 2-list-learnable classes that cannot be compressed. This refutes the list version of the sample compression conjecture by Littlestone and Warmuth (1986). We prove an even stronger impossibility result, showing that there are $2$-list-learnable classes that cannot be compressed even when the reconstructed function can work with lists of arbitrarily large size. We prove a similar result for (1-list) PAC learnable classes when the label space is unbounded. This generalizes a recent result by arXiv:2308.06424.