Abstract:Many practical prediction algorithms represent inputs in Euclidean space and replace the discrete 0/1 classification loss with a real-valued surrogate loss, effectively reducing classification tasks to stochastic optimization. In this paper, we investigate the expressivity of such reductions in terms of key resources, including dimension and the role of randomness. We establish bounds on the minimum Euclidean dimension $D$ needed to reduce a concept class with VC dimension $d$ to a Stochastic Convex Optimization (SCO) problem in $\mathbb{R}^D$, formally addressing the intuitive interpretation of the VC dimension as the number of parameters needed to learn the class. To achieve this, we develop a generalization of the Borsuk-Ulam Theorem that combines the classical topological approach with convexity considerations. Perhaps surprisingly, we show that, in some cases, the number of parameters $D$ must be exponentially larger than the VC dimension $d$, even if the reduction is only slightly non-trivial. We also present natural classification tasks that can be represented in much smaller dimensions by leveraging randomness, as seen in techniques like random initialization. This result resolves an open question posed by Kamath, Montasser, and Srebro (COLT 2020). Our findings introduce new variants of \emph{dimension complexity} (also known as \emph{sign-rank}), a well-studied parameter in learning and complexity theory. Specifically, we define an approximate version of sign-rank and another variant that captures the minimum dimension required for a reduction to SCO. We also propose several open questions and directions for future research.
Abstract:List learning is a variant of supervised classification where the learner outputs multiple plausible labels for each instance rather than just one. We investigate classical principles related to generalization within the context of list learning. Our primary goal is to determine whether classical principles in the PAC setting retain their applicability in the domain of list PAC learning. We focus on uniform convergence (which is the basis of Empirical Risk Minimization) and on sample compression (which is a powerful manifestation of Occam's Razor). In classical PAC learning, both uniform convergence and sample compression satisfy a form of `completeness': whenever a class is learnable, it can also be learned by a learning rule that adheres to these principles. We ask whether the same completeness holds true in the list learning setting. We show that uniform convergence remains equivalent to learnability in the list PAC learning setting. In contrast, our findings reveal surprising results regarding sample compression: we prove that when the label space is $Y=\{0,1,2\}$, then there are 2-list-learnable classes that cannot be compressed. This refutes the list version of the sample compression conjecture by Littlestone and Warmuth (1986). We prove an even stronger impossibility result, showing that there are $2$-list-learnable classes that cannot be compressed even when the reconstructed function can work with lists of arbitrarily large size. We prove a similar result for (1-list) PAC learnable classes when the label space is unbounded. This generalizes a recent result by arXiv:2308.06424.